Skip to main content
Log in

General Solutions of Relativistic Wave Equations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

General solutions of relativistic wave equations are studied in terms of functions on the Lorentz group. A close relationship between hyperspherical functions and matrix elements of irreducible representations of the Lorentz group is established. A generalization of the Gel'fand-Yaglom theory for higher-spin equations is given. A two-dimensional complex sphere is associated with each point of Minkowski spacetime. The separation of variables in a general relativistically invariant system is obtained via the hyperspherical functions defined on the surface of the two-dimensional complex sphere. In virtue of this the wave functions are represented in the form of series in hyperspherical functions. Such a description allows one to consider all the physical fields on an equal footing. General solutions of the Dirac and Weyl equations, and also the Maxwell equations in the Majorana-Oppenheimer form, are given in terms of functions on the Lorentz group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Akhiezer, A. I., and Berestetskii, V. B. (1965). Quantum Electrodynamics, Wiley, New York.

    Google Scholar 

  • Amar, V., and Dozzio, U. (1972). Gel'fand-Yaglom equations with charge or energy density of definite sign. Nuovo Cimento A 11, 87-99.

    Google Scholar 

  • Bogoliubov, N. N., and Shirkov, D. V. (1993). Quantum Fields, Nauka, Moscow.

    Google Scholar 

  • de Broglie, L. (1943). Theorie de particules a spin (methode de fusion), Paris.

  • Esposito, S. (1998). Covariant Majorana formulation of electrodynamics. Foundations of Physics 28, 231-244.

    Google Scholar 

  • Gel'fand, I. M., Minlos, R. A., and Ya. Z. Shapiro. (1963). Representations of the Rotation and Lorentz Groups and Their Applications, Pergamon Press, Oxford.

    Google Scholar 

  • Gel'fand, I. M., and Yaglom, A. M. (1948). General relativistic-invariant equations and infinite-dimensional representations of the Lorentz group. Zhurnal Eksperimental' nai i Teoreticherkoi Fiziki 18, 703-733.

    Google Scholar 

  • Giannetto, E. (1985). A Majorana-Oppenheimer formulation of quantum electrodynamics. Lettere al Nuovo Cimento 44, 140-144.

    Google Scholar 

  • Kagan, V. F. (1926). Ueber einige Zahlensysteme, zu denen die Lorentztransformation fürt, Publishing House of Institute of Mathematics, Moscow.

    Google Scholar 

  • Majorana, E. (unpublished). Scientific Papers, deposited at the “Domus Galileana,” Pisa, quaderno 2, p.101/1; Majorana, E. (unpublished). Scientific Papers, deposited at the “Domus Galileana,” Pisa, quaderno 3, p.11-160; Majorana, E. (unpublished). Scientific Papers, deposited at the “Domus Galileana,” Pisa, quaderno 15, p.16; Majorana, E. (unpublished). Scientific Papers, deposited at the “Domus Galileana,” Pisa, quaderno 17, p. 83-159.

  • Moses, H. E. (1958). A spinor representation of Maxwell's equations. Nuovo Cimento Supplement 7, 1-18.

    Google Scholar 

  • Moses, H. E. (1959). Solution of Maxwell's equations in terms of a spinor notation: The direct and inverse problem. Physical Review 113, 1670-1679.

    Google Scholar 

  • Naimark, M. A. (1964). Linear Representations of the Lorentz Group, Pergamon Press, London.

    Google Scholar 

  • Oppenheimer, J. R. (1931). Physical Review 38, 725.

    Google Scholar 

  • Petrov, A. Z. (1969). Einstein Spaces, Pergamon Press, Oxford.

    Google Scholar 

  • Pletyukhov, V. A., and Strazhev, V. I. (1983). On Dirac-like relativistic wave equations. Russian Journal of Physics 12, 38-41.

    Google Scholar 

  • Recami, E. (1990). Possible physical meaning of the photon wave-function, according to Ettore Majorana. In Hadronic Mechanics and Non-Potential Interactions, Nova Scientific Publications New York, pp. 231-238.

    Google Scholar 

  • Rumer, Yu. B., and Fet, A. I. (1977). Group Theory and Quantized Fields [in Russian], Nauka, Moscow.

    Google Scholar 

  • Ryder, L. (1985). Quantum Field Theory, Cambridge University Press. Cambridge.

    Google Scholar 

  • Schweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory, Harper & Row, New York.

    Google Scholar 

  • Smorodinsky, Ya. A., and Huszar, M. (1970). Representations of the Lorentz group and the generalization of helicity states. Teor. Mat. Fiz. 4(3), 328-340.

    Google Scholar 

  • Van der Waerden, B. L. (1932). Die Gruppentheoretische Methode in der Quantenmechanik, Springer, Berlin.

    Google Scholar 

  • Varlamov, V. V. (1999). Fundamental automorphisms of Clifford algebras and an extension of Dabrowski pin groups. Hadronic Journal 22, 497-535.

    Google Scholar 

  • Varlamov, V. V. (2001a). Discrete symmetries and Clifford algebras. International Journal of Theoretical Physics 40(4), 769-805.

    Google Scholar 

  • Varlamov, V. V. (2002). About algebraic foundations of Majorana-Oppenheimer quantum electrodynamics and de Broglie-Jordan Neutrino theory of light. Ann. Fond. Broglie 27(2), 273-286.

    Google Scholar 

  • Varlamov, V. V. (2002b). Hyperspherical functions and linear representations of the Lorentz group. Preprint math-ph/0205013.

  • Varlamov, V. V. (2002c). A note on the Majorana-Oppenheimer quantum electrodynamics. Preprint math-ph/0206008.

  • Vilenkin, N. Ya. (1968). Special Functions and the Theory of Group Representations, AMS, Providence, RI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varlamov, V.V. General Solutions of Relativistic Wave Equations. International Journal of Theoretical Physics 42, 583–633 (2003). https://doi.org/10.1023/A:1024498001488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024498001488

Navigation