Skip to main content
Log in

Genesis on-board determination of the solar wind flow regime

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Some of the objectives of the Genesis mission require the separate collection of solar wind originating in different types of solar sources. Measurements of the solar wind protons, alpha particles, and electrons are used on-board the spacecraft to determine whether the solar-wind source is most likely a coronal hole, interstream flow, or a coronal mass ejection. A simple fuzzy logic scheme operating on measurements of the proton temperature, the alpha-particle abundance, and the presence of bidirectional streaming of suprathermal electrons was developed for this purpose. Additional requirements on the algorithm include the ability to identify the passage of forward shocks, reasonable levels of hysteresis and persistence, and the ability to modify the algorithm by changes in stored constants rather than changes in the software. After a few minor adjustments, the algorithm performed well during the initial portion of the mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barraclough, B. L. et al.: 2003, 'The Plasma Ion and Electron Instruments for the Genesis Mission', Space Sci. Rev., this volume.

  • Burlaga, L. F. and Ogilvie, K. W.: 1973, 'Solar Wind Temperature and Speed', J. Geophys. Res. 78, 2028.

    Article  ADS  Google Scholar 

  • Burnett, D. S. et al.: 2003, 'The Genesis Discovery Mission: Return of Solar Matter to Earth', Space Sci. Rev., this volume.

  • Galvin, A. B.: 1997, 'Minor Ion Composition in CME-Related Solar Wind', in N. Crooker, J. A. Joselyn and J. Feynman (eds.), Coronal Mass Ejections, Geophysical Monograph 99, Amer. Geophys. Un., Washington, DC, pp. 253.

    Google Scholar 

  • Gloeckler, G., Fisk, L. A., Hefti, S., Schwadron, N. A., Zurbuchen. T. H., Ipavich, F. M., Geiss, J., Bochsler, P., and Wimmer-Schweingruber, R. F.: 1999, 'Unusual Composition of the Solar Wind in the 2–3 May 1998 CME Observed with SWICS on ACE', Geophys. Res. Lett. 26, 157.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Pizzo, V., and Bame, S. J.: 1973, 'Anomalously Low Proton Temperatures in the Solar Wind Following Interplanetary ShockWaves: Evidence for Magnetic Bottles?', J. Geophys. Res. 78, 2001.

    ADS  Google Scholar 

  • Gosling, J. T., Bame, S. J., Feldman, W. C., McComas, D. J., Phillips, J. L., and Goldstein, B. E.: 1993, 'Counterstreaming Suprathermal Electron Events Upstream of Corotating Shocks in the Solar Wind beyond 2 AU: Ulysses', Geophys. Res. Lett. 20, 2335.

    ADS  Google Scholar 

  • Gosling, J. T., Birn, J., and Hesse, M.: 1995, 'Three-Dimensional Magnetic Reconnection and the Magnetic Topology of Coronal Mass Ejection Events', Geophys. Res. Lett. 22, 869.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Skoug, R. M., and Feldman, W. C.: 2001, 'Solar Wind Electron Halo Depletions at 90 deg Pitch Angles', Geophys. Res. Lett. 28, 4155.

    Article  ADS  Google Scholar 

  • Ho, G. C., Hamilton, D. C., Gloeckler, G., and Bochsler, P., 2000, 'Enhanced Solar Wind 3He2+ Associated with Coronal Mass Ejections', Geophys. Res. Lett. 27, 309.

    Google Scholar 

  • Lopez, R. E.: 1987, 'Solar Cycle Invariance in the Solar Wind Proton Temperature Relationships', J. Geophys. Res. 92, 11189.

    ADS  Google Scholar 

  • McComas, D. J. et al.: 1998, 'Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer', Space Sci. Rev. 86, 563.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Goldstein, R., and Goldstein, B. E.: 1997, 'Features Observed in the Trailing Regions of Interplanetary Clouds from Coronal Mass Ejections', J. Geophys. Res. 102, 19.

    Google Scholar 

  • Richardson, I. G. and Cane, H. V.: 1995, 'Regions of Abnormally Low Proton Temperature in the Solar Wind (1965–1991) and Their Association with ejecta', J. Geophys. Res. 100, 23 397.

    Article  ADS  Google Scholar 

  • von Steiger, R., Schwadron, N. A., Fisk, L. A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R. F., and Zurbuchen, T. H.: 2000, 'Composition of Quasi-Stationary Solar Wind Flows from Ulysses/Solar Wind Ion Composition Spectrometer', J. Geophys. Res. 105, 27217.

    Article  ADS  Google Scholar 

  • Zwickl, R. D., Asbridge, J. R., Bame, S. J., Feldman, W. C., Gosling, J. T., and Smith, E. J.: 1983, 'Plasma Properties of Driver Gas Following Interplanetary Shocks Observed by ISEE-3', in M. Neugebauer (ed.), Solar Wind Five; NASA Conference Proceedings 2280, NASA, Washington, DC, pp. 711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neugebauer, M., Steinberg, J., Tokar, R. et al. Genesis on-board determination of the solar wind flow regime. Space Science Reviews 105, 661–679 (2003). https://doi.org/10.1023/A:1024478129261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024478129261

Keywords

Navigation