Skip to main content
Log in

Distribution and evolution of chitinase genes in Streptomyces species: involvement of gene-duplication and domain-deletion

Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Streptomyces coelicolor A3(2) possesses nine genes for family 18 chitinases and two for family 19, showing high multiplicity. By hybridization analyses, distribution of those chitinase genes was investigated in six other Streptomyces species covering the whole phylogenetic range based on 16S rDNA sequences. All strains showed high-multiplicity of chitinase genes, like S. coelicolor A3(2). The phylogeny and gene organization of the family 18 chitinase genes cloned from Streptomyces species so far were then analyzed to investigate the gene evolution. It was concluded that Streptomyces already possessed a variety of chitinase genes prior to branching into many species, and that the ancestral genes of chiA and chiB have been generated by gene-duplication. In the course of the analyses, evidence that the chi30 and chi40 genes of S. thermoviolaceus were derived from their corresponding original chitinase genes by losing gene parts for substrate-binding domains and fibronectin type III-like domains was obtained. It was thus shown that gene-duplication and domain-deletion were implicated in generating the high diversity and multiplicity of chitinase genes in Streptomyces species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bentley S.D., Chater K.F., Cerdeño-Tárraga A.-M., Challis G.L., Thomson N.R., James K.D. et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–147.

    Article  PubMed  Google Scholar 

  • Blaak H., Schnellmann J., Walter S., Henrissat B. and Schrempf H. 1993. Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur. J. Biochem. 214: 659–669.

    Article  PubMed  CAS  Google Scholar 

  • Charnock S.J., Bolam D.N., Turkenburg J.P., Gilbert H.J., Ferreira L.M., Davies G.J. et al. 2000. The X6 “thermostabilizing” Strepdomains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013–5021.

    Article  PubMed  CAS  Google Scholar 

  • Durrant A.J., Hall J., Hazlewood G.P. and Gilbert H.J. 1991. The scatnon-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochem. J. 273: 289–293.

    PubMed  CAS  Google Scholar 

  • Fujii T. and Miyashita K. 1993. Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. J. Gen. Microbiol. 139: 677–686.

    PubMed  CAS  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    PubMed  CAS  Google Scholar 

  • Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M. et al. 1985. Genetic Manipulation of Streptomyces: A Laboratory Manual. John Innes Foundation, Norwich.

    Google Scholar 

  • Kataoka M., Ueda K., Kudo T., Seki T. and Yoshida T. 1997. Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. FEMS Microbiol. Lett. 151: 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Kawase T., Kanai R., Ohno T., Tanabe T., Nikaidou N., Miyashita K. et al. 2001. Identification of three family 18 chitinase genes of Streptomyces griseus HUT6037. Chitin and Chitosan Res. 7: 241–251.

    CAS  Google Scholar 

  • Kormanec J., Sevcikova B. and Homerova D. 2000. Cloning of a two-component regulatory system in the regulation of chitinase in Streptomyces coelicolor A3(2). Folia Microbiol. (Praha) 45: 397–406.

    CAS  Google Scholar 

  • Li H., Plattner H., Schmz K.-L., Kieß M., Diekmann H. and Meens J. 2000. Cloning, sequencing and heterologous expression of a new chitinase gene, chi92, from Streptomyces olivaceoviridis ATCC 11238. Biotechnol. Letters 22: 1203–1209.

    Article  CAS  Google Scholar 

  • Little E., Bork P. and Doolittle R.F. 1994. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J. Mol. Evol. 39: 631–643.

    Article  PubMed  CAS  Google Scholar 

  • Maidak B.L., Olsen G.J., Larsen N., Overbeek R., McCaughey M.J. and Woese C.R. 1997. The RDP (Ribosomal Database Project). Nucleic Acids Res. 25: 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita K. and Fujii T. 1993. Nicleotide sequence and analysis of a gene (chiA) for a chitinase from Streptomyces lividans 66. Biosci. Biotechnol. Biochem. 57: 1691–1698.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita K., Fujii T.,Watanabe A. and Ueno H. 1997. Nucleotide sequence and expression of a gene (chiB) for a chitinase from Streptomyces lividans. J. Ferment. Bioeng. 83: 26–31.

    Article  CAS  Google Scholar 

  • Ohno T., Armand S., Hata T., Nikaidou N., Henrissat B., Mitsutomi M. et al. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 178: 5065–5070.

    PubMed  CAS  Google Scholar 

  • Riehle M.M., Bennett A.F. and Long A.D. 2001. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 98: 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Robbins P.W., Albright C. and Benfield B. 1988. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J. Biol. Chem. 263: 443–447.

    PubMed  CAS  Google Scholar 

  • Saito A., Fujii T. and Miyashita K. 1999a. Chitinase system in Streptomyces. Actinomycetologica 13: 1–10.

    CAS  Google Scholar 

  • Saito A., Fujii T., Yoneyama T., Redenbach M., Ohno T., Watanabe T. et al. 1999b. High-multiplicity of chitinase genes in Strepdomains tomyces coelicolor A3(2). Biosci. Biotechnol. Biochem. 63: 710–718.

    Article  PubMed  CAS  Google Scholar 

  • Saito A., Ishizaka M., Francisco P.B. Jr, Fujii T. and Miyashita K. 2000. Transcriptional co-regulation of five chitinase genes scattered on theStreptomyces coelicolor A3(2) chromosome. Microbiology 146: 2937–2946.

    PubMed  CAS  Google Scholar 

  • Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  • Shimosaka M., Fukutomi Y., Narita T., Zhang X., Kodaira R., Nogawa M. et al. 2001. The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. J. Biosci. Bioeng. 91: 103–105.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K., Taiyoji M., Sugawara N., Nikaidou N., Henrissat B. and Watanabe T. 1999. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem. J. 343: 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T., Fujiwara S., Nishikori S., Fukui T., Takagi M. and Imanaka T. 1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl. Environ. Microbiol. 65: 5338–5344.

    PubMed  CAS  Google Scholar 

  • Tsujibo H., Endo H., Minoura K., Miyamoto K. and Inamori Y. 1993. Cloning and sequence analysis of the gene encoding a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Gene 134: 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Tsujibo H., Hatano N., Endo H., Miyamoto K. and Inamori Y. 2000a. Purification and characterization of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520 and cloning of the encoding gene. Biosci. Biotechnol. Biochem. 64: 96–102.

    Article  PubMed  CAS  Google Scholar 

  • Tsujibo H., Hatano N., Okamoto T., Endo H., Miyamoto K. and Inamori Y. 1999. Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol. Lett. 181: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Tsujibo H., Okamoto T., Hatano N., Miyamoto K., Watanabe T., Mitsutomi M. et al. 2000b. Family 19 chitinases from Streptomyces thermoviolaceus OPC-520: molecular cloning and characterization. Biosci Biotechnol Biochem 64: 2445–2453.

    Article  PubMed  CAS  Google Scholar 

  • Ueda M., Kawaguchi T., Miyatake K. and Arai M. 1999. Chitinolytic enzymes and their genes from Aeromonas sp. No.10S-24. MIE BIOFORUM 98: 654–663.

    Google Scholar 

  • Watanabe et al. 1994. Author please supply missing information..

  • Watanabe T., Kanai R., Kawase T., Tanabe T., Mitsutomi M., Sakuda S. et al. 1999. Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology 145: 3353–3363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, A., Fujii, T. & Miyashita, K. Distribution and evolution of chitinase genes in Streptomyces species: involvement of gene-duplication and domain-deletion. Antonie Van Leeuwenhoek 84, 7–15 (2003). https://doi.org/10.1023/A:1024463113606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024463113606

Navigation