Skip to main content
Log in

The FMO protein is related to PscA in the reaction center of green sulfur bacteria

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The Fenna–Matthews–Olson protein is a water-soluble protein found only in green sulfur bacteria. Each subunit contains seven bacteriochlorophyll (BChl) a molecules wrapped in a string bag of protein consisting of mostly β sheet. Most other chlorophyll-binding proteins are water-insoluble proteins containing membrane-spanning α helices. We compared an FMO consensus sequence to well-characterized, membrane-bound chlorophyll-binding proteins: L & M (reaction center proteins of proteobacteria), D1 & D2 (reaction center proteins of PS II), CP43 & CP47 (core proteins of PS II), PsaA & PsaB (reaction center proteins of PS I), PscA (reaction center protein of green sulfur bacteria), and PshA (reaction center protein of heliobacteria). We aligned the FMO sequence with the other sequences using the PAM250 matrix modified for His binding-site identities and found a signature sequence (LxHHxxxGxFxxF) common to FMO and PscA. (The two His residues are BChl a. binding sites in FMO.) This signature sequence is part of a 220-residue C-terminal segment with an identity score of 13%. PRSS (Probability of Random Shuffle) analysis showed that the 220-residue alignment is better than 96% of randomized alignments. This evidence supports the hypothesis that FMO protein is related to PscA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem 1 are related. Proc Natl Acad Sci USA 89: 8135–8139

    Article  PubMed  Google Scholar 

  • Chisholm D and Williams JGK (1988) Nucleotide sequence of psbC, the gene encoding the CP-43 chlorophyll a-binding protein of Photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol 10: 293–301

    Article  CAS  Google Scholar 

  • Daurat-Larroque ST, Brew K and Fenna RE (1986) The complete amino acid sequence of a bacteriochlorophyll a-protein from Prosthecochloris aestuarii. J Biol Chem 261: 3607–3615

    PubMed  CAS  Google Scholar 

  • Dayhoff MO, Schwartz R and Orcutt BC (1978) Atlas of Protein Sequence and Structure, Vol 5, Suppl 3. National Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • Dracheva S, Williams JC and Blankenship RE (1992) Sequencing of the FMO-protein from Chlorobium tepidum. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 53–56. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Feldblyum TV, Hansen CL, Craven MB, Radune D, Khouri H, Fujii CY, White O, Venter JC, Volfovsky N, Gruber TM, Ketchum KA, Tettelin H, Bryant DA, and Fraser CM (2002) The complete genome sequence of the green sulfur bacterium Chlorobium tepidum. Proc Natl Acad Sci USA 99: 9509–9514

    Article  PubMed  CAS  Google Scholar 

  • Fändrich M, Fletcher MA and Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410: 165–166

    Article  PubMed  Google Scholar 

  • Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP (1997) BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA 94: 1459–1464

    Article  PubMed  CAS  Google Scholar 

  • Gonnet GH, Cohen MA and Benner SA (1994) Analysis of aminoacid substitution during divergent evolution – the 400 by 400 dipeptide substitution matrix. Biochem Biophys Res Commun 199: 489–496

    Article  PubMed  CAS  Google Scholar 

  • Hager-Braun C, Xie D-L, Jarosch U, Herold E, Büttner M, Zimmermann R, Deutzmann R, Hauska G and Nelson N (1995) Stable photobleaching of P840 in Chlorobium reaction center prepara-tions: presence of the 42-kDa bacteriochlorophyll a protein and a 17-kDa polypeptide. Biochemistry 34: 9617–9624

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98

    CAS  Google Scholar 

  • Kanecko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, and Tabata S (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. PCC6803. DNA Res 2: 153–166

    Article  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ2,6-phytadienol. Photosyth Res 63: 269 –280

    Article  CAS  Google Scholar 

  • Li Y-F, Zhou W, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 272: 1–16

    Article  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillis mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MF and Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR and Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448

    Article  PubMed  CAS  Google Scholar 

  • PEDANT (2001) http://pedant.mips.biochem.mpg.de/index.html Permentier HP (2001) Light-harvesting and core complexes of anoxygenic phototrophic bacteria. PhD dissertation, University of Leiden, The Netherlands, p 87

    Google Scholar 

  • Prusiner SB (1996) Molecular biology and pathogenesis of prion diseases. TIBS 21: 482–487

    PubMed  CAS  Google Scholar 

  • Smart LB and McIntosh L (1991) Expression of photosynthesis genes in the cyanobacterium Synechocystis sp. PCC6803: psaApsaB and psbA transcripts accumulate in dark-grown gells. Plant Mol Biol 17: 959–971

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) ClustalW – improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    PubMed  CAS  Google Scholar 

  • Vermaas WFJ, Williams JGK and Arntzen CJ (1987) Sequencing and modification of psbB, the gene encoding the CP-47 protein of Photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol 8: 317–326

    Article  CAS  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856

    Article  PubMed  CAS  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37: 949–957

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, J.M., Raymond, J. The FMO protein is related to PscA in the reaction center of green sulfur bacteria. Photosynthesis Research 75, 277–285 (2003). https://doi.org/10.1023/A:1023998000396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023998000396

Navigation