Skip to main content
Log in

Inheritance Patterns of Phenolics in F1, F2, and Back-Cross Hybrids of Willows: Implications for Herbivore Responses to Hybrid Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the inheritance pattern of phenolic secondary compounds in pure and hybrid willows and its consequences for plant resistance to leaf-feeding insects. F1, F2, and back-cross hybrids along with pure species were produced by hand pollination of pure, naturally-growing Salix caprea (L., Salicaceae) and S. repens (L.) plants. Leaf concentrations of condensed tannins and seven different phenolic glucosides were determined by using butanol-HCl and HPLC analyses. Insect herbivore leaf damage was measured on the same leaves as used for chemical analyses. We found hybrids to be approximately intermediate between the parental species: S. caprea with high levels of condensed tannins and no phenolic glucosides, and S. repens with low levels of condensed tannins and high levels of phenolic glucosides. We also found a negative correlation between concentrations of condensed tannins and phenolic glucosides, suggesting a trade-off in production of these two substances. F2 hybrids and the hybrid back-crossed to S. caprea were significantly more damaged by insect herbivores than the parental species and the F1 hybrid, indicating reduced resistance and possibly a selective disadvantage for these hybrid categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York.

    Google Scholar 

  • Arnold, M. L., Bulger, M. R., Burke, J. M., Hempel, A. L., and Williams, J. H. 1999. Natural hybridization: How low can it go and still be important? Ecology 80:371–381.

    Google Scholar 

  • Boecklen, W. J. and Spellenberg, R. 1990. Structure of herbivore communities in two oak (Quercus spp.) hybrid zones. Oecologia 85:92–100.

    Google Scholar 

  • Buschmann, H. and Spring, O. 1995. Sesquiterpene lactones as a result from interspecific hybridization in Helianthus species. Phytochemistry 39:367–371.

    Google Scholar 

  • Court, W. A., Brandle, J. E., Pocs, R., and Hendel, J. G. 1992. The chemical composition of somatic hybrids between Nicotiana tabacum and N. debneyi. Can. J. Plant Sci. 72:209–225.

    Google Scholar 

  • Denno, R. F., Larson, S., and Olmstead, K. L. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137.

    Google Scholar 

  • Fritz, R. S. 1999. Resistance of hybrid plants to herbivores: Genes, environment, or both? Ecology 80:382–391.

    Google Scholar 

  • Fritz, R. S., Nichols-Orians, C. M., and Brunsfeld, S. J. 1994. Interspecific hybridization of plants and resistance to herbivores: Hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106–117.

    Google Scholar 

  • Fritz, R. S., Roche, B. M., and Brunsfeld, S. J. 1998. Genetic variation in resistance of hybrid willows to herbivores. Oikos 83:117–128.

    Google Scholar 

  • Fritz, R. S., Roche, B. M., Brunsfeld, S. J., and Orians, C. M. 1996. Interspecific and temporal variation in herbivore responses to hybrid willows. Oecologia 108:121–129.

    Google Scholar 

  • Gustavsson, B. 2001. Catalogus Coleopterorum Sueciae. http://www.nrm.se/en/catalogus.html.se 2001-11–27.

  • Häggström, H. E. 1997. Variable plant quality and performance of the willow-feeding leaf beetle Galerucella lineola. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. 1995. Multivariate Data Analyses with Readings. Prentice-Hall, New Jersey.

    Google Scholar 

  • Hjältén, J. 1997. Willow hybrids and herbivory: A test of hypotheses of phytophage response to hybrid plants using the generalist leaf-feeder Lochmea caprea (Chrysomelidae). Oecologia 109:571–574.

    Google Scholar 

  • Hjältén, J. 1998. An experimental test of hybrid resistance to insects and pathogens using Salix caprea, S-repens and their F1 hybrids. Oecologia 117:127–132.

    Google Scholar 

  • Hjältén, J., Hallgren, P. J., and Qian, H. 2002. The importance of parent host status for hybrid susceptibility to herbivores: A test with two hybrid lines of willows. Ecoscience 9:339–349.

    Google Scholar 

  • Jolivet, P. and Hawkeswood, T. J. 1995. Host Plants of Chrysomelidae of the World: An Essay About the Relationships Between the Leaf Beetles and Their Food Plants. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Julkunen-Tiitto, R. 1986. A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species. Phytochemistry 25:663–667.

    Google Scholar 

  • Julkunen-Tiitto, R. 1989. Distribution of certain phenolics in Salix species (Salicaceae). PhD Thesis, Publications in Sciences No 15. University of Joensuu, Joensuu, Finland.

    Google Scholar 

  • Julkunen-Tiitto, R., Rousi, M., Bryant, J., Sorsa, S., Keinänen, M., and Sikanen, H. 1996. Chemical diversity of several Betulaceae speicies: Comparison of phenolics and terpenoids in northern birch stems. Tree Struct. Funct. 11:16–22.

    Google Scholar 

  • Julkunen-Tiitto, R. and Sorsa, S. 2001. Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J. Chem. Ecol. 27:779–789.

    Google Scholar 

  • Kelly, M. T. and Curry, J. P. 1991. The influence of phenolic compounds on the suitability of 3 Salix species as hosts for the willow beetle Phratora vulgatisima. Entomol. Exp. Appl. 61:25–32.

    Google Scholar 

  • Kendall, D. A., Hunter, T., Arnold, G. M., Liggit, J., Morris, T., and Wiltshire, C. W. 1996. Susceptibility of willow clones (Salix spp.) to herbivory by Phyllodecta vulgatissima (L.), and Galerucella lineola (Fab.) (Coleoptera, Chrysomelidae). Ann. Appl. Biol. 129:379–390.

    Google Scholar 

  • Koch, K. 1992. Die Käfer Mitteleuropas E, Band 3, ökologi. Goecke & Evers, Krefeld, Germany.

    Google Scholar 

  • Kolehmainen, J., Julkunen-Tiitto, R., Roininen, H., and Tahvanainen, J. 1994. Importance of phenolic glucosides in host selection of shoot galling sawfly, Euura amerinae. Salix pentandra. J. Chem. Ecol. 20:2455–2466.

    Google Scholar 

  • Kolehmainen, J., Julkunen-Tiitto, R., Roininen, H., and Tahvanainen, J. 1995. Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol. Exp. Appl. 74:235–243.

    Google Scholar 

  • Krebs, C. J. 1999. Ecological Methodology. Benjamin Cummings, Menlo Park, California.

    Google Scholar 

  • Levy, M. and Levin, D. A. 1974. Novel flavenoids and reticulate evolution in the Phlox pilosa-P. drumondi complex. Am. J. Bot. 61:156–167.

    Google Scholar 

  • Lid, J. 1979. Flora of Norway and Sweden (in Norwegian). Det Norska Samlaget, Oslo, Norway.

    Google Scholar 

  • Lindroth, R. L., 1991. Differential toxicity of plant allelo chemicals to insects, roles of enzymatic detoxification systems, pp. 1-33. in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. III. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Messina, F. J., Richards, J. H., and McArthur, E. D. 1996. Variable responses of insects to hybrid versus parental sagebrush in common gardens. Oecologia 107:513–521.

    Google Scholar 

  • Mossberg, B., Stenberg, L., and Eriksson, S. 1992. Den nordiska floran, The Nordic Flora (in Swedish). Wahlström & Widstrand, Turnhout, Belgium.

    Google Scholar 

  • Moulia, C. 1999. Parasitism of plant and animal hybrids: Are facts and fates the same? Ecology 80:392–406.

    Google Scholar 

  • Orians, C. M. 2000. The effects of hybridization in plants on secondary chemistry: Implications for the ecology and evolution of plant–herbivore interactions. Am. J. Bot. 87:1749–1756.

    Google Scholar 

  • Orians, C. M. and Fritz, R. S. 1995. Secondary chemistry of hybrid and parental willows: Phenolic glucosides and condensed tannins in Salix sericea, S. eriocephala, and their hybrids. J. Chem. Ecol. 21:1245–1253.

    Google Scholar 

  • Orians, C. M., Griffiths, M. E., Roche, B. M., and Fritz, R. S. 2000. Phenolic glucosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: Not all hybrids are created equal. Biochem. Syst. Ecol. 28:619–632.

    Google Scholar 

  • Orians, C. M., Huang, C. H., Wild, A., Dorfman, K. A., Zee, P., Dao, M. T. T., and Fritz, R. S., 1997. Willow hybridization differentially affects preference and performance of herbivorous beetles. Entomol. Exp. Appl. 83:285–294.

    Google Scholar 

  • Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225.

    Google Scholar 

  • Rieseberg, L. H. and Ellstrand, N. C. 1993. What can molecular and morphological markers tell us about plant hybridization? Crit. Rev. Plant. Sci. 12:213–241.

    Google Scholar 

  • Roche, B. M. and Fritz, R. S. 1997. Genetics of resistance of Salix sericea to a diverse community of herbivores. Evolution 51:1490–1498.

    Google Scholar 

  • Roininen, H., Price, P. W., Julkunen-Tiitto, R., Tahvanainen, J., and Ikonen, A. 1999. Oviposition stimulant for a gall-inducing sawfly, Euura lasiolepis, on willow is a phenolic glucoside. J. Chem. Ecol. 25:943–953.

    Google Scholar 

  • Soetens, P., Pasteels, J. M., Daloze, D., and Kaisin, M. 1998. Host plant influence on the composition of the defensive secretion of Chrysomela vigintipunctata larvae (Coleoptera: Chrysomelidae). Biochem. Syst. Ecol. 26:703–712.

    Google Scholar 

  • Soetens, P., Rowell-Rahier, M., and Pasteels, J. M. 1991. Influence of phenolglucosides and trichome density on the distribution of insects herbivores on willows. Entomol. Exp. Appl. 59:175–187.

    Google Scholar 

  • Spring, O. and Schilling, E. E. 1989. Chemosystematic investigation of the annual species Helianthus (Asteraceae). Biochem. Syst. Ecol. 17:519–528.

    Google Scholar 

  • Strauss, S. Y. 1994. Levels of herbivory and parasitism in host hybrid zones. Trends Ecol. Evol. 9:209–214.

    Google Scholar 

  • Tahvanainen, J., Julkunen-Tiitto, R., and Kettunen, J. 1985. Phenolic glucosides govern the food selection pattern of willow feeding leaf beetles. Oecologia 67:52–56.

    Google Scholar 

  • Venables, W. N., Smith, D. M., and The R-Development Core Team, July 18, 2002. An Introduction to R. http://WWW.R-project.org/.

  • Venables, W. N. and Ripley, B. D. 1999. Modern Applied Statistics with S-Plus, Springer, New York.

    Google Scholar 

  • Waterman, P. G. and Mole, S. 1994. Analyses of Phenolic Plant Metabolites. Blackwell Scientific, Oxford.

    Google Scholar 

  • Whitham, T. G. 1989. Plant hybrid zones as sinks for pests. Science 244:1490–1493.

    Google Scholar 

  • Whitham, T. G., Morrow, P. A., and Potts, B. M. 1994. Plant hybrid zones as centers of biodiversity: The herbivore community of two endemic Tasmanian eucalypts. Oecologia 97:481–490.

    Google Scholar 

  • Zar, J. H. 1996. Biostatistical Analyses. Prentice-Hall, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Hallgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallgren, P., Ikonen, A., Hjältén, J. et al. Inheritance Patterns of Phenolics in F1, F2, and Back-Cross Hybrids of Willows: Implications for Herbivore Responses to Hybrid Plants. J Chem Ecol 29, 1143–1158 (2003). https://doi.org/10.1023/A:1023829506473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023829506473

Navigation