Skip to main content
Log in

Oxidation Kinetics and Surface Chemistry of an Fe–Cr–Al–Y Alloy Medium Made of 12-μm Diameter Fibers at Elevated Temperatures in Dry Air

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Fiber media composed of Fe–Cr–Al–Y alloy are being used increasingly as materials for high-temperature applications for their excellent oxidation resistance. The oxidation kinetics of Fe–Cr–Al–Y alloy fiber medium as a heat-resistant material for high-temperature applications was studied in dry air at 1073, 1188, 1255, and 1318 K. The oxidation process followed the parabolic kinetic law. The alumina-scale growth was found to be influenced by short-circuit diffusion and the presence of stresses related to oxide-scale growth. The surface of the oxide scale formed on the fiber medium was analyzed using X-ray photoelectron spectroscopy, which revealed that the outer surface of the oxide scale formed on the fiber medium composed of 12-μm diameter Fe–Cr–Al–Y alloy fibers, consisted of θ-Al2O3, α-Al2O3, and Cr-oxide. The metastable θ-Al2O3 subsequently partially transformed into the more stable α-phase following a time-temperature-transformation relationship. The surface morphology and the cross section of the oxide scale formed on the fiber medium in the temperature range 1073–1318 K in dry air, have been studied by scanning-electron spectroscopy (SEM) and focused-ion beam, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Francis and J. A. Jutson, Corros. Sci. 8, 445(1968).

    Google Scholar 

  2. J. K. Tien and F. S. Pettit, Metall. Trans. 3, 1587(1972).

    Google Scholar 

  3. F. A. Golightly, F. H. Stott, and G. C. Wood, Oxid. Met. 10, 163(1976).

    Google Scholar 

  4. K. P. R. Reddy, J. Smialek, and A. R. Cooper, Oxid. Met. 17, 429(1982).

    Google Scholar 

  5. G. B. Abderrazik, F. Millot, G. Moulin, and A. M. Huntz, J. Amer. Ceramic Soc. 68, 307(1985).

    Google Scholar 

  6. E. W. A. Young and J. H. W. De Wit, Oxid. Met. 26, 351(1986).

    Google Scholar 

  7. J. Jedlinski and S. Mrowec, Mater. Sci. Eng. 87, 281(1987).

    Google Scholar 

  8. G. Ben Abderrazik, G. Moulin, A. M. Huntz, E. W. A. Young, and J. H. W. De Wit, Solid State Ionics 22, 285(1987).

    Google Scholar 

  9. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxid. Met. 32, 67(1989).

    Google Scholar 

  10. J. Jedlinski and G. Borchardt, Oxid. Met. 36, 317(1991).

    Google Scholar 

  11. D. Clemens, K. Bongartz, W. J. Quadakkers, H. Nickel, H. Holzbrecher, and J.S. Becker, Fresenius J. Anal. Chem. 353, 267(1995).

    Google Scholar 

  12. B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78, 99(1995).

    Google Scholar 

  13. K. Messaoudi, A. M. Huntz, and B. Lesage, Mater. Sci. Eng. A247, 248(1998).

    Google Scholar 

  14. V. K. Tolpygo, Oxid. Met. 51, 449(1999).

    Google Scholar 

  15. Z. Liu, W. Gao, and Y. He, Oxid. Met. 53, 341(2000).

    Google Scholar 

  16. C. Sarioglu, M. J. Stiger, J. R. Blachere, R. Janakiraman, E. Schumann, A. Ashary, F. S. Pettit, and G. H. Meier, Mater. Corros. 51, 358(2000).

    Google Scholar 

  17. P. Pérez, V. A. C. Hanappel, and M. F. Stroosnijder, Surf. Coat. Technol. 139, 207(2001).

    Google Scholar 

  18. C. Mennicke, D. R. Clarke, and M. Rühle, Oxid. Met. 55, 551(2001).

    Google Scholar 

  19. C. Badini and F. Laurella, Surf. Coat. Technol. 135, 291(2001).

    Google Scholar 

  20. B. A. Pint, J. R. Martin, and L. W. Hobbs, Oxid. Met. 39, 167(1993).

    Google Scholar 

  21. R. A. Versaci, D. Clemens, W. J. Quadakkers, and R. Hussey, Solid State Ionics 59, 235(1993).

    Google Scholar 

  22. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, J. Electrochem. Soc. 131, 923(1984).

    Google Scholar 

  23. R. O. Srinivasan and J. J. Lannutti, Surf. Coat. Technol. 86, 54(1996).

    Google Scholar 

  24. W. Fei, S. C. Kuiry, S. Seal, K. Scammon, N. Quick, and M. June, Surf. Eng. 18, 197(2002).

    Google Scholar 

  25. S. Seal, S. C. Kuiry, and Leyda A. Braco, Oxid. Met. 56, 583(2001).

    Google Scholar 

  26. S. Seal, S. C. Kuiry, and Leyda A. Braco, Oxid. Met. 57, 297(2002).

    Google Scholar 

  27. T. L. Barr and S. Seal, J. Vacuum Sci. Technol. A13, 1239(1995).

    Google Scholar 

  28. P. M. A. Sherwood, in Practical Surface Analysis by Auger and Photoelectron Spectroscopy, D. Briggs and M. P. Seah, eds. (Wiley, London, 1983), p. 445.

    Google Scholar 

  29. C. S. Tedmon, J. Electrochem. Soc. 113, 766(1966).

    Google Scholar 

  30. C. S. Giggins and F. S. Pettit, J. Electrochem. Soc. 118, 1782(1971).

    Google Scholar 

  31. E. A. Polman, T. Fransen, and P. J. Gellings, J. Phys. Condens. Matter 1, 4497(1989).

    Google Scholar 

  32. Y. Oishi, K. Ando, and Y. Kubota, J. Chem. Phys. 73, 1410(1980).

    Google Scholar 

  33. R. G. Reddy, X. Wen, and I. C. I. Okafor, Metall. Mater. Trans. 31A, 3023(2000).

    Google Scholar 

  34. V. K. Tolpygo and D. R. Clarke, Acta Mater. 46, 5167(1998).

    Google Scholar 

  35. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, Jill Chastain ed., (Perkin-Elmer Corp., Eden Prairie, Minnesota, 1984).

    Google Scholar 

  36. I. Levin, T. Gemming, and D. G. Brandon, Phys. Stat. Sol. 166 A, 197(1998).

    Google Scholar 

  37. H-.C. Kao and W-.C. Wei, J. Amer. Ceram. Soc. 83, 362(2000).

    Google Scholar 

  38. H. J. Schmutzler and H. J. Grabke, Oxid. Met. 39, 15(1993).

    Google Scholar 

  39. P. F. Tortorelli and J. H. DeVan, Mater. Sci. Eng. A153, 673(1992).

    Google Scholar 

  40. J. Quadakkars, K. Schmidt, H. Grubmeier, and E. Wallura, Mater. High Temp. 10,23(1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuiry, S.C., Seal, S., Fei, W. et al. Oxidation Kinetics and Surface Chemistry of an Fe–Cr–Al–Y Alloy Medium Made of 12-μm Diameter Fibers at Elevated Temperatures in Dry Air. Oxidation of Metals 59, 543–557 (2003). https://doi.org/10.1023/A:1023675307885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023675307885

Navigation