Skip to main content
Log in

Physiology of Organotrophic and Lithotrophic Growth of the Thermophilic Iron-Reducing Bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Growth physiology of the iron-reducing bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus was investigated. The stimulation of the organotrophic growth of T. ferrireducens and T. siderophilusin the presence of Fe(III) was shown to be due to the utilization of ferric iron as an electron acceptor in catabolic processes and not to the effect exerted on the metabolism by Fe(II) or by changes in the redox potential. It was established that Fe(III) reduction in T. ferrireducens is not a detoxication strategy. In T. siderophilus, this process is carried out to alleviate the inhibitory effect of hydrogen. T. ferrireducens was shown to be capable of lithoautotrophic growth with molecular hydrogen as an electron donor and amorphous ferric oxide as an electron acceptor, in the absence of any organic substances. The minimum threshold of H2 consumption was 3 × 10–5 vol % of H2. The presence of CO dehydrogenase activity in T. ferrireducens suggests that CO2 fixation in this organism involves the anaerobic acetyl-CoA pathway. T. siderophilus failed to grow under lithoautotrophic conditions. The fact that T. ferrireducens contains c-type cytochromes and T. siderophilus lacks them confirms the operation of different mechanisms of ferric iron reduction in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Slobodkin, A.I., Zavarzina, D.G., Sokolova, T.G., and Bonch-Osmolovskaya, E.A., Dissimilatory Reduction of Inorganic Electron Acceptors by Thermophilic Anaerobic Prokaryotes, Mikrobiologiya, 1999, vol. 68,no. 5, pp. 600-622.

    Google Scholar 

  2. Slobodkin, A.I., Eroshchev-Shak, V.A., Kostrikina, N.A., Lavrushin, V.Yu., Dainyak, L.G., and Zavarzin, G.A., Formation of Magnetite by Thermophilic Anaerobic Microorganisms, Dokl. Akad. Nauk, 1995, vol. 345,no. 5, pp. 694-697.

    Google Scholar 

  3. Slobodkin, A.I. and Wiegel, J., Fe(III) as an Electron Acceptor for H2 Oxidation in Thermophilic Anaerobic Enrichment Cultures from Geothermal Areas, Extremophiles, 1997, vol. 1, pp. 106-109.

    Google Scholar 

  4. Slobodkin, A., Campbell, B., Cary, S.C., Bonch-Osmolovskaya, E., and Jeanthon, C., Evidence for the Presence of Thermophilic Fe(III)-Reducing Microorganisms in Deep-Sea Hydrothermal Vents at 13° N (East Pacific Rise), FEMS Microbiol. Ecol., 2001, vol. 36, pp. 235-243.

    Google Scholar 

  5. Liu, S.V., Zhou, J., Zhang, C., Cole, D.R., Gajdarziska-Josifovska, M., and Phelps, T.J., Thermophilic Fe(III)-Reducing Bacteria from the Deep Subsurface: The Evolutionary Implications, Science, 1997, vol. 277, pp. 1106-1109.

    Google Scholar 

  6. Slobodkin, A., Jeanthon, C., L'Haridon, S., Nazina, T., Miroshnichenko, M., and Bonch-Osmolovskaya, E., Dissimilatory Reduction of Fe(III) by Thermophilic Bacteria and Archaea in Deep Subsurface Petroleum Reservoirs of Western Siberia, Curr. Microbiol., 1999, vol. 39, pp. 99-102.

    Google Scholar 

  7. Boone, D.R., Liu, Y., Zhao, Z.-J., Balkwill, D.L., Drake, G.R., Stevens, T.O., and Aldrich, H.C., Bacillus infernus sp. nov., an Fe(III)-and Mn(IV)-Reducing Anaerobe from the Deep Terrestrial Subsurface, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 441-448.

    Google Scholar 

  8. Greene, A.C., Patel, B.K.C., and Sheehy, A.J., Deferribacter thermophilus gen. nov., sp. nov., a Novel Thermophilic Manganese-and Iron-Reducing Bacterium Isolated from a Petroleum Reservoir, Int. J. Syst. Bacteriol., 1986, vol. 47, pp. 505-509.

    Google Scholar 

  9. Slobodkin, A., Reysenbach, A.-L., Srutz, N., Dreier, M., and Wiegel, J., Thermoterrabacterium ferrireducens gen. nov., sp. nov., a Thermophilic Anaerobic Dissimilatory Fe(III)-Reducing Bacterium from a Continental Hot Spring, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 541-547.

    Google Scholar 

  10. Slobodkin, A.I., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., Chernyh, N.A., and Bonch-Osmolovskaya, E.A., Thermoanaerobacter siderophilus sp. nov., a Novel Dissimilatory Fe(III)-Reducing, Anaerobic, Thermophilic Bacterium, Int. J. Syst. Bacteriol., 1999, vol. 49, p. 1471-1478.

    Google Scholar 

  11. Takai, K., Sugai, A., Itoh, T., and Horikoshi, K., Paleococcus ferrophilus gen. nov., sp. nov., a Barophilic, Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent Chimney, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 489-500.

    Google Scholar 

  12. Wiegel, J., Thermophilic Iron(III)-Reducing Bacteria, Abs. Third Int. Congress on Extremophiles, Hamburg, Germany, Sept. 3-7, 2000, p. 59.

  13. Zavarzina, D.G., Biogeochemical Factors of the Transformation of Iron Compounds In a Reducing Environment, Cand. Sci. (Biol.) Dissertation, Geological Faculty, Moscow State Univ., Moscow, 2001.

    Google Scholar 

  14. Lovley, D.R., Dissimilatory Fe(III) and Mn(IV) Reduction, Microbiol. Rev., 1991, vol. 55, pp. 259-287.

    Google Scholar 

  15. Adams, M.W.W., The Metabolism of Hydrogen by Extremely Thermophilic, Sulfur-Dependent Bacteria, FEMS Microbiol. Rev., 1990, vol. 75, pp. 219-238.

    Google Scholar 

  16. Fardeau, M.-L., Cayol, J.-L., Magot, M., and Ollivier, B., Hydrogen Oxidation Abilities in the Presence of Thiosulfate as Electron Acceptor within the Genus Thermoanaerobacter, Curr. Microbiol., 1994, vol. 29, pp. 269-272.

    Google Scholar 

  17. Faudon, C., Fardeau, M.-L., Heim, J., Patel, B., Magot, M., and Ollivier, B., Peptide and Amino Acid Oxidation in the Presence of Thiosulfate by Members of the Genus Thermoanaerobacter, Curr. Microbiol., 1995, vol. 31, pp. 152-157.

    Google Scholar 

  18. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Chernykh, N.A., Kostrikina, N.A., Pikuta, E.V., and Rainey, F.A., Reduction of Elemental Sulfur by Moderately Thermophilic Organotrophic Bacteria and the Description of Thermoanaerobacter sulfurophilus sp. nov., Mikrobiologiya 1997, vol. 66,no. 5, pp. 581-587.

    Google Scholar 

  19. Kashefi, K., Tor, J.M., Holmes, D.E., Gaw Van Praagh, C.V., Reysenbach, A.L., and Lovley, D.R., Geoglobus ahangari gen. nov., sp. nov., a Novel Hyperthermophilic Archaeon Capable of Oxidizing Organic Acids and Growing Autotrophically on Hydrogen with Fe(III) Serving as the Sole Electron Acceptor, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 719-728.

    Google Scholar 

  20. Lovley, D.R. and Phillips, E.J.P., Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments, Appl. Environ. Microbiol., 1987, vol. 53, pp. 2636-2641.

    Google Scholar 

  21. Drake, H.L., Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljugdahl” Pathway: Past and Current Perspectives, Acetogenesis Drake, H.L., Ed., New York: Chapman and Hall, 1994.

    Google Scholar 

  22. Richardson, D.J., Bacterial Respiration: A Flexible Process for a Changing Environment, Microbiology (UK), 2000, vol. 146, pp. 551-571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, S.N., Bonch-Osmolovskaya, E.A. & Slobodkin, A.I. Physiology of Organotrophic and Lithotrophic Growth of the Thermophilic Iron-Reducing Bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus. Microbiology 72, 132–137 (2003). https://doi.org/10.1023/A:1023299410478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023299410478

Navigation