Skip to main content
Log in

Pharmacokinetic–Pharmacodynamic Modeling of Tolmetin Antinociceptive Effect in the Rat Using an Indirect Response Model: A Population Approach

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The relationship between the pharmacokinetics and the antinociceptive effect of tolmetin was characterized by an indirect model using a population approach. Animals received an intra-articular injection of uric acid in the right hindlimb to induce its dysfunction. Once dysfunction was complete, rats received an oral tolmetin dose of 1, 3.2, 10, 31.6, 56.2, or 100mg/kg and antinociceptive effect and blood tolmetin concentration were simultaneously evaluated. Tolmetin produced a dose-dependent recovery of functionality, which was not directly related to blood concentration. An inhibitory indirect response model was used based on these response patterns and the fact that tolmetin reduced nociception by inhibiting prostaglandin synthesis. Pharmacokinetic (PK) and pharmacodynamic (PD) data were simultaneously fitted using nonlinear mixed effects modeling (NONMEM) to the one-compartment model and indirect response model. The individual time courses of the response were described using Bayesian analysis with population parameters as a priori estimates. There was good agreement between the predicted and observed data. Population analysis yielded a maximal inhibition of the nociceptive response of 76% and an IC50 of 9.22 μg/ml. This IC50 is similar to that for tolmetin-induced prostaglandin synthesis inhibition in vitro (3.0 μg/ml). The present results demonstrate that mechanism-based PK-PD analysis using a population approach is useful for quantitating individual responses as well as reflecting the actual mechanism of action of a given drug in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Lewis. New antirheumatic agents. Fenoprofen calcium (Nalfon), Naproxen (Naprosyn), and Tolmetin sodium (Tolectin). J. Am. Med. Assoc. 237:1260–1261 (1977).

    Article  CAS  Google Scholar 

  2. R. J. Taylor and J. J. Salata. Inhibition of prostaglandin synthetase by tolmetin (tolectin, McN-2559), a new non-steroidal anti-inflammatory agent. Biochem. Pharmacol. 25:2479–2484 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. M. L. Selley, J. Glass, E. J. Triggs, and J. Thomas. Pharmacokinetic studies of tolmetin in man. Clin. Pharmacol. Ther. 17:599–605 (1975).

    CAS  PubMed  Google Scholar 

  4. S. H. Dromgoole, D. E. Furst, R. K. Desiraju, R. K. Nayak, M. A. Kirschenbaum, and H. E. Paulus. Tolmetin kinetics and synovial fluid prostaglandin E levels in rheumatoid arthritis. Clin. Pharmacol. Ther. 32:371–377 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. D. E. Furst, S. H. Dromgoole, R. K. Desiraju and H. E. Paulus. Clinical pharmacology of tolmetin: Comparisons in rheumatoid arthritis patients and normal volunteers. J. Clin. Pharmacol. 23:329–335 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. G. Levy. Mechanism-based pharmacodynamic modeling [Commentary]. Clin. Pharmacol. Ther. 56:356–358 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. V. Granados-Soto, F. J. Flores-Murrieta, F. J. López-Muñoz, L. A. Salazar, J. E. Villarreal and G. Castañeda-Hernández. Relationship between paracetamol plasma levels and its analgesic effect in the rat. J. Pharm. Pharmacol. 44:741–744 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. V. Granados-Soto, F. J. López-Muñoz, G. Castañeda-Hernández, L. A. Salazar, J. E. Villarreal, and F. J. Flores-Murrieta. Characterization of the analgesic effects of paracetamol and caffeine combinations in the pain-induced functional impairment model in the rat. J. Pharm. Pharmacol. 45:627–631 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. V. Granados-Soto, F. J. López-Muñoz, E. Hong, and F. J. Flores-Murrieta. Relationship between pharmacokinetics and the analgesic effect of ketorolac in the rat. J. Pharmacol. Exp. Ther. 272:352–356 (1995).

    CAS  PubMed  Google Scholar 

  10. F. J. López-Muñoz, L. A. Salazar, G. Castañeda-Hernández, and J. E. Villarreal. A new model to assess analgesic activity: Pain-induced functional impairment in the rat (PIFIR). Drug Dev. Res. 28:169–175 (1993).

    Article  Google Scholar 

  11. L. B. Sheiner. The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods. Drug Metab. Rev. 15:153–171 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. D. M. Flores-Acevedo, F. J. Flores-Murrieta, G. Castañeda-Hernández and F. J. López-Muñoz. Potentiation of the analgesic effect of tolmetin, a potent non-steroidal anti-inflammatory drug, by caffeine in the rat. Pharm. Sci. 1:441–444 (1995).

    CAS  Google Scholar 

  13. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457–478 (1993).

    Article  CAS  Google Scholar 

  14. W. J. Jusko and H. C. Ko. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406–419 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. The Committee for Research and Ethical Issues of the International Association for the Study of Pain. Ethical standards for investigation of experimental pain in animals. Pain 9:141–143 (1980).

    Google Scholar 

  16. NONMEM User's Guides, S. L. Beal and L. B. Sheiner (eds.), NONMEM Project Group, University of California, San Francisco. San Francisco, 1992.

    Google Scholar 

  17. J. R. Wade, A. W. Kelman, C. A. Howe, and B. Whiting. Effect of misspecification of the absorption process on subsequent parameter estimation in population analysis. J. Pharmacokin. Biopharm. 21:209–222, 1993.

    Article  CAS  Google Scholar 

  18. N. H. G. Holford and L. B. Sheiner. Understanding the dose-effect relationship: Clinical application of pharmacokinetic-pharmacodynamic models. Clin. Pharmacokin. 6:429–453 (1981).

    Article  CAS  Google Scholar 

  19. A. Dray and J. N. Wood. Nonopioid molecular signaling mechanisms involved in nociception and antinociception. In A. I. Basbaum and J.-M. Besson (eds.), Towards a New Pharmacotherapy of Pain, Wiley, New York, 1991, pp. 21–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Murrieta, F.J., Ko, H.C., Flores-Acevedo, D.M. et al. Pharmacokinetic–Pharmacodynamic Modeling of Tolmetin Antinociceptive Effect in the Rat Using an Indirect Response Model: A Population Approach. J Pharmacokinet Pharmacodyn 26, 547–557 (1998). https://doi.org/10.1023/A:1023273100270

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023273100270

Navigation