Skip to main content
Log in

Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(DL-lactide) (PDLLA) foams and bioactive glass (Bioglass®) particles were used to form bioresorbable and bioactive composite scaffolds for applications in bone tissue engineering. A thermally induced phase separation process was applied to prepare highly porous PDLLA foams filled with 10 wt % Bioglass® particles. Stable and homogeneous layers of Bioglass® particles on the surface of the PDLLA/Bioglass® composite foams as well as infiltration of Bioglass® particles throughout the porous network were achieved using a slurry-dipping technique. The quality of the bioactive glass coatings was reproducible in terms of thickness and microstructure. In vitro studies in simulated body fluid (SBF) were performed to study the formation of hydroxyapatite (HA) on the surface of the PDLLA/Bioglass® composites, as an indication of the bioactivity of the materials. Formation of the HA layer after immersion in SBF was confirmed by X-ray diffraction and Raman spectroscopy measurements. The rate of HA formation in Bioglass®-coated samples was higher than that observed in non-coated samples. SEM analysis showed that the HA layer thickness rapidly increased with increasing time in SBF in the Bioglass®-coated samples. The high bioactivity of the developed composites suggests that the materials are attractive for use as bioactive, resorbable scaffolds in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Vacanti and J. P. Vacanti, in “Principles of Tissue Engineering”, edited by R. P. Lanza, R. Langer and W. L. Chick (R. G. Landes Company, Texas, USA, 1997) p. 619.

    Google Scholar 

  2. M. Kellomäki, H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris and P. Törmälä, Biomaterials 21 (2000) 2495.

    Google Scholar 

  3. E. Piskin, Mater. Sci. Forum 250 (1997) 1.

    Google Scholar 

  4. D. W. Hutmacher, Biomaterials 21 (2000) 2529.

    Google Scholar 

  5. J. R. Jones and L. L. Hench, Mater. Sci. Tech. 17 (2001) 891.

    Google Scholar 

  6. Y. Zhang and M. Zhang, J. Biomed. Mater. Res. 55 (2001) 304.

    Google Scholar 

  7. V. Maquet and R. Jerome, Mater. Sci. Forum 250 (1997) 15.

    Google Scholar 

  8. A. G. Mikos and J. S. Temenoff, EJB Electronic J. Biotechnol. 2(3) (2000) 1.

    Google Scholar 

  9. C. M. Agrawal, K. A. Athanasiou and J. D. Heckman, Mater. Sci. Forum 250 (1997) 115.

    Google Scholar 

  10. (a) C. Schugens, V. Maquet, C. Grandfils, R. Jerome and P. Teyssie, Polymer 37 (1996) 1027. (b) C. Schugens, V. Maquet, C. Grandfils, R. Jerome and P. Teyssie, J. Biomed. Mater. Res. 30 (1996) 449.

    Google Scholar 

  11. L. G. Griffith, Acta Mater. 48 (2000) 263.

    Google Scholar 

  12. S. K. Ashiku, M. A. Randolph and C. A. Vacanti, Mater. Sci. Forum 250 (1997) 129.

    Google Scholar 

  13. A. Stamboulis and L. L. Hench, Key Eng. Mater. 192–195 (2001) 729.

    Google Scholar 

  14. S. Hurrell and R. E. Cameron, J. Mater. Sci.: Mater. Med. 12 (2001) 811.

    Google Scholar 

  15. C. M. Agrawal and R. B. Ray, J. Biomed. Mater. Res. 55 (2001) 141.

    Google Scholar 

  16. H. Schliephake, F. W. Neukam, D. Hutmacher and J. Becker, J. Oral. Maxillofac. Surg. 52 (1994) 57.

    Google Scholar 

  17. L. L. Hench, J. Amer. Ceram. Soc. 81 (1998) 1705.

    Google Scholar 

  18. H. Niiranen, T. Pyhalto, P. Rokkanen, T. Paatola and P. Tormala, Key Eng. Mater. 192–195 (2001) 721.

    Google Scholar 

  19. W. Linhart, F. Peters, W. Lehmann, C. Schwarz, A. Schilling, M. Amling, J. M. Rueger and M. Epple, J. Biomed. Mater. Res. 54 (2001) 162.

    Google Scholar 

  20. C. C. P. M. Verheyen, J. R. De Wijn, C. A. Van Blitterswijk, K. De Groot and P. M. Rozing, ibid. 27 (1993) 433.

    Google Scholar 

  21. S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S.-H. Hyon and K. Jamshidi, Biomaterials 7 (1986) 183.

    Google Scholar 

  22. R. L. Dunn, R. A. Casper and B. S. Kelly, in “Proc. 11th Annual Meeting of the Society for Biomaterials”, San Diego, CA, April 25–28 (1985) p. 213.

  23. T. C. Lin, in “Proc. 12th Annual Meeting of the Society for Biomaterials”, Minneapolis-St. Paul, May 29–June 1 (1986) p. 166.

  24. J. E. Devin, M. A. Attawia and C. T. Laurencin, J. Biomater. Sci. Polym. Edn. 7 (1996) 661.

    Google Scholar 

  25. C. Durucan and P. W. Brown, Adv. Eng. Mater. 3 (2001) 227.

    Google Scholar 

  26. C. C. P. M. Verheyen, J. R. De Wijn, C. A. Van Blitterswijk and K. De Groot, J. Biomed. Mater. Res. 26 (1992) 1277.

    Google Scholar 

  27. P. X. Ma, R. Zhang, G. Xiao and R. Franceschi, ibid. 54 (2001) 284.

    Google Scholar 

  28. R. C. Thomson, M. J. Yaszemski, J. M. Powers and A. G. Mikos, Biomaterials 18 (1998) 1935.

    Google Scholar 

  29. G. Chen, T. Ushida and T. Tateishi, Adv. Mater. 12(6) (2000) 455.

    Google Scholar 

  30. S. N. Nazhat, M. Kellomäki, P. Törmälä, K. E. Tanner and W. Bonfield, J. Biomed. Mater. Res. (Appl. Biomater.) 58 (2001) 335.

    Google Scholar 

  31. N. Ignjatović, K. Delijić, M. Vukcević and D. Uskoković, Z. Metallkd. 92(2) (2001) 145.

    Google Scholar 

  32. X. Deng, J. Hao and M. Yuan, J. Mater. Sci. Lett. 20 (2001) 281.

    Google Scholar 

  33. H. Niiaren and P. Tormala, J. Mater. Sci. Mater. Med. 10 (1999) 707.

    Google Scholar 

  34. A. A. Ignatius, P. Augat and L. E. Claes, J. Biomater. Sci. Polym. Edn. 12 (2001) 185.

    Google Scholar 

  35. A. R. Boccaccini, A. G. Stamboulis, J. A. Roether and L. L. Hench, in “Verbundwerkstoffe und Werkstoffverbunde”, edited by B. Wielage und G. Leonhardt (Wiley-VCH, Weinheim, 2001) p. 420.

    Google Scholar 

  36. B. D. Boyan, G. Niederauer, K. Kieswetter, N. C. Leatherbury and D. C. Greenspan, US Pat. 5977 204, November 2 (1999).

  37. A. Stamboulis, L. L. Hench and A. R. Boccaccini, J. Mater. Sci.: Mater. Med. 13 (2002) 843.

    Google Scholar 

  38. A. Stamboulis, A. R. Boccaccini and L. L. Hench, Adv. Eng. Mater. 4 (2002) 105.

    Google Scholar 

  39. F. Sharif-Yazdi, PhD Thesis, Imperial College, London (2001).

  40. E. Pirhonen, G. Grandi and P. Tormala, Key Eng. Mater. 192–195 (2001) 725.

    Google Scholar 

  41. M. Kikuchi, Y. Koyama, K. Takakuda, H. Miyairi and J. Tanaka, ibid. 192–195 (2001) 677.

    Google Scholar 

  42. I. B. Leonor, R. A. Sousa, A. M. Cunha, Z. P. Zhong, D. Greenspan and R. L. Reis, ibid. 192–195 (2001) 705.

    Google Scholar 

  43. T. Paatola, E. Pirhonen and P. Tormala, ibid. 192–195 (2001) 717.

    Google Scholar 

  44. A. A. Ignatius, O. Betz, P. Augat and L. E. Claes, J. Biomed. Mater. Res. (Appl. Biomater.) 58 (2001) 701.

    Google Scholar 

  45. M. Wang, J. Weng, J. Ni, C. H. Goh and C. X. Wang, Key Eng. Mater. 192–195 (2001) 741.

    Google Scholar 

  46. V. Maquet, D. Martin, B. Malgrange, R. Franzen, J. Schoenen, G. Moonen and R. Jérôme, J. Biomed. Mater. Res. 52 (2000) 639.

    Google Scholar 

  47. V. Maquet, D. Martin, F. Scholtes, J. Schoenen, G. Moonen and R. Jérôme, Biomaterials 22 (2001) 1137.

    Google Scholar 

  48. L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee, J. Biomed. Mater. Res. 2 (1971) 117.

    Google Scholar 

  49. J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier and R. Jerome, Biomaterials 23 (2002) 3871.

    Google Scholar 

  50. A. G. Mikos, M. L. Lyman, L. E. Freed and R. Langer, Biomaterials 15(1) (1994) 55.

    Google Scholar 

  51. http://sung7.kuic.kyoto-u.ac.jp/others/SBF/SBF_E.html

  52. I. Rehman, L. L. Hench, W. Bonfield and R. Smith, Biomaterials 15 (1994) 865.

    Google Scholar 

  53. V. Maquet, S. Blacher, R. Pirard, J.-P. Pirard and R. Jérôme, Langmuir 16 (2000) 10463.

    Google Scholar 

  54. S. Blacher, V. Maquet, R. Pirard, J.-P. Pirard and R. Jérôme, Colloids and Surf. A: Physicochem. Eng. Aspects 187–188 (2001) 375.

    Google Scholar 

  55. K. C. Blakeslee and R. A. Condrate, J. Amer. Ceram. Soc. 54 (1971) 559.

    Google Scholar 

  56. G. Penel, G. Leroy, C. Rey and E. Bres, Calcif. Tissue Int. 63 (1998) 475.

    Google Scholar 

  57. J. Wilson, G. H. Piggot, F. J. Schoen and L. L. Hench, J. Biomed. Mat. Res. 15 (1981) 805.

    Google Scholar 

  58. V. Maquet, A. R. Boccaccini, A. R. Boccaccini, L. Pravata, I. Notingher, R. Jérôme, J. Biomed. Mater. Research (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccini, A.R., Notingher, I., Maquet, V. et al. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications. Journal of Materials Science: Materials in Medicine 14, 443–450 (2003). https://doi.org/10.1023/A:1023266902662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023266902662

Keywords

Navigation