Skip to main content
Log in

Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944–1998)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Barley breeding programs have empirically selected for improving grain yield and quality. The objective of this study was to quantify genetic gains in yield in 2-rowed malting barley cultivars released from 1944to 1998 in Argentina, identifying the major physiological traits responsible for them. For this purpose, a field experiment was conducted in absence of biotic and abiotic stressful factors and with lodging being prevented mechanically. Until the 1970's,potential yield was maintained nearly constant at 5.25 mg ha-1 and since then it increased at a rate of 41 kg ha-1 year-1. That bi-linear trend was closely related to the trend of averaged yields obtained by farmers. The contribution made by breeding yield potential to the total yield gains achieved by farmers was estimated in c. One third. Neither time to heading nor time to maturity were systematically modified by breeding. However, the partitioning of the developmental time was modified: time to achieve both maximum number of floret primordia and length of the jointing –heading period were increased with the year of release of the cultivars. The main component associated with yield was the number of grains per m2, due to variations in number of spikes per m2.Total and vegetative biomass at maturity increased with the year of release of the cultivars, at a rate of 45 and 19 kg ha-1 year-1, while both harvest index and stem height remained virtually unmodified. Differences in biomass at heading among cultivars were related to the improvement on the abilities to capture more radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeledo, L.G., D.F. Calderini & G.A. Slafer, 2002a. Physiological changes associated with genetic improvement of grain yield in barley. In: G.A. Slafer, J.L. Molina Cano, R. Savin, J.L. Araus & I. Romagosa (Eds.), Barley: Recent Advances from Molecular Biology to Agronomy of Yield and Quality, pp. 361-386. Food Product Press, New York.

    Google Scholar 

  • Abeledo, L.G., D.F. Calderini & G.A. Slafer, 2002b. Absorción y translocación de nitrógeno en cultivares de cebada cervecera liberados entre 1944 y 1998. XI Reunión Latinoamericana de Fisilogía Vegetal, Uruguay.

  • Anonymous, 2000. Secretaría de Agricultura, Ganadería, Pesca y Alimentación, Ministerio de Economía, Argentina. www.sagpya.mecon.gov.ar.

  • Barberis L.A., G. Duarte, A. Sfeir, L. Marban & M. Vázquez, 1987. Respuesta del trigo a la fertilización fosforada en la Pampa Arenosa HÚmeda y su predicción. Ciencia del Suelo 5: 166–174.

    Google Scholar 

  • Boukerrou, L. & D.D. Rasmusson, 1990. Breeding for high biomass yield in spring barley. Crop Sci 30(1): 31–35.

    Article  Google Scholar 

  • Bulman, P., D.E. Mather & D.L. Smith, 1993. Genetic improvement of spring barley cultivars grown in eastern Canada from 1910 to 1988. Euphytica 71(1): 35–48.

    Article  Google Scholar 

  • Byrnes, B.H. & B.L. Bumb, 1998. Population growth, food production and nutrient requirements. J Crop Prod 2: 1–27.

    Article  Google Scholar 

  • Calderini, D.F. & G.A. Slafer, 1998. Changes in yield and yield stability in wheat during the 20th century. Field Crops Res 57: 335–347.

    Article  Google Scholar 

  • Calderini, D.F., M.F. Dreccer & G.A. Slafer, 1995. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and latest trends. Plant Breed 114: 108–112.

    Article  Google Scholar 

  • Calderini, D.F., M.F. Dreccer & G.A. Slafer, 1997. Consequences of plant breeding on biomass growth, radiation interception and radiation use efficiency in wheat. Field Crops Res 52: 271–281.

    Article  Google Scholar 

  • Calderini, D.F., D.J. Miralles, M.F. Dreccer, L.G. Abeledo & A. Lorenzo, 1998. Rendimiento y componentes del rendimiento en genotipos de cebadas de 2 y 6 hileras. Actas del IV Congreso Nacional de Trigo, Mar del Plata, Argentina, pp. 2–05.

  • Calderini, D.F., M.P. Reynolds & G.A. Slafer, 1999. Genetic gains in wheat yield and main physiological changes associated with them during the 20th century. In: E.H. Satorre & G.A. Slafer (Eds.), Wheat. Ecology and Physiology of Yield Determination, pp. 351-377. Food Product Press, New York.

    Google Scholar 

  • Calviño, P. & V. Sadras, 2002. On-farm assessment of constraints to wheat yield in the south-eastern Pampas. Field Crops Res 74: 1–11.

    Article  Google Scholar 

  • Cao, W. & D.N. Moss, 1989. Temperature effect on leaf appearance and phyllochron in wheat and barley. Crop Sci 29: 1018–1021.

    Article  Google Scholar 

  • Cassman, K.G., 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96: 5952–5959.

    Article  PubMed  CAS  Google Scholar 

  • Dayson, T., 1999. World food trends and prospects to 2025. Proc Natl Acad Sci USA 96: 5929–5936.

    Article  Google Scholar 

  • Dreccer, M.F., C. Grashoff & R. Rabbinge, 1997. Source-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration. Field Crops Res 49: 269–277.

    Article  Google Scholar 

  • Evans, L.T., 1993. Crop Evolution, Adaptation and Yield. Cambridge University Press, pp. 486.

  • Feil, B., 1992. Breeding progress in small grain cereals-A comparison of old and modern cultivars. Plant Breed 108: 1–11.

    Article  Google Scholar 

  • Francis, C.A., 1991. Contributions of plant breeding to future cropping systems. In: D.A. Sleper, T.C. Barker & P.J. Bramel-Cox (Eds.), Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods, pp. 83-93. Crop Science Society of America Special Publication Number 18, Wisconsin, USA.

    Google Scholar 

  • Jandell, 1991. Table Curve v. 3.0. User's manual version 3.0 AISN software. Jandell Scientific, Corte Madera, California.

    Google Scholar 

  • Jedel, P. & J.H. Helm, 1994. Assessment of western Canadian barleys of historical interest: I. Yield and agronomic traits. Crop Sci 34(4): 922–927.

    Article  Google Scholar 

  • Martiniello, P., G. Delogu, M. Oboardi, G. Boggini & A.M. Stanca, 1987. Breeding progress in grain yield and selected agronomic characters of winter barley (Hordeum vulgare L.) over the last quarter of a century. Plant Breed 99: 289–294.

    Article  Google Scholar 

  • Miralles, D.J. & G.A. Slafer, 1995. Yield, biomass and yield components in dwarf, semidwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed 114: 392–396.

    Article  Google Scholar 

  • Miralles, D.J. & G.A Slafer, 1997. Radiation interception and radiation use efficiency of near-isogenic wheat lines with different height. Euphytica 97: 201–208.

    Article  Google Scholar 

  • Miralles, D.J., R.A. Richards & G.A. Slafer, 2000. Duration of the stem elongation period influences the number of fertile florets in wheat and barley. Aust J Plant Physiol 27: 931–940.

    Google Scholar 

  • Muñoz, P., J. Voltas, J.L. Araus, E. Igartua & I. Romagosa, 1998. Changes over time in the adaptation of barley releases in northeastern Spain. Plant Breed 117: 531–535.

    Article  Google Scholar 

  • Naylor, R.E.L., D.T. Stokes & S. Matthews, 1998. Biomass, shoot uniformity and yield of winter barley. J Agric Sci Camb 131: 13–21.

    Article  Google Scholar 

  • Passarella, C.S., R. Savin & G.A. Slafer, 2002. Grain weight and malting quality in barley as affected by brief periods of increased spike temperature under field conditions. Aust J Agric Res 53: 1–9.

    Article  Google Scholar 

  • Rajaram, S., 2001. Prospects and promise of wheat breeding in the 21st century. Euphytica 119: 3–15.

    Article  Google Scholar 

  • Richards, R.A., 1992. The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust J Agric Res 43: 517–523.

    Article  Google Scholar 

  • Richards, R.A., 1996. Increasing yield potential in wheat-source and sink limitations. In: M.P. Reynolds, S. Rajaram & A. McNab (Eds.), Increasing Yield Potential in Wheat: Breaking the Barriers, pp. 134-149. CIMMYT, México, D.F.

    Google Scholar 

  • Riggs, T.J., P.R. Hanson, N.D. Start, D.M. Miles, C.L. Morgan & M.A. Ford, 1981. Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. J Agric Sci Camb 97: 599–610.

    Article  Google Scholar 

  • Savin, R., P.J. Stone & M.E. Nicolas, 1996. Responses of grain growth and malting quality of barley to short periods of high temperature in field studies using portable chambers. Aust J Agric Res 47: 465–477.

    Article  Google Scholar 

  • Sayre, K.D., R.P. Singh, J. Huerta-Espino & S. Rajaram, 1998. Genetic progress in reducing losses to leaf rust in CIMMYT-derived Mexican spring wheat cultivars. Crop Sci 38: 654–659.

    Article  Google Scholar 

  • Siddique, K.H.M., E.J.M. Kirby & M.W. Perry, 1989. Ear-to-stem ratio in old and modern wheats; relationship with improvement in number of grains per ear and yield. Field Crops Res 21: 59–78.

    Article  Google Scholar 

  • Slafer, G.A. & F.H. Andrade, 1989. Genetic improvement in bread wheat (Triticum aestivum L.) yield in Argentina. Field Crops Res 21: 289–296.

    Article  Google Scholar 

  • Slafer, G.A. & F.H. Andrade, 1991. Changes in physiological attributes of the dry matter economy of bread wheat (Triticum aestivum L.) through genetic improvement of grain yield potential at different regions of the world. A review. Euphytica 58: 37–49.

    Article  Google Scholar 

  • Slafer, G.A. & F.H. Andrade, 1993. Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different eras. Field Crops Res 31: 351–367.

    Article  Google Scholar 

  • Slafer, G.A. & P. Peltonen-Sainio, 2001. Yield trends of temperate cereals in high latitude countries from 1940 to 1998. Agric & Food Sci in Finland 10: 121–131.

    Google Scholar 

  • Slafer, G.A. & E.H. Satorre, 1999. An introduction to the physiological-ecological analysis of wheat yield. In: E.H. Satorre & G.A. Slafer (Eds.), Wheat. Ecology and Physiology of Yield Determination, pp. 3-12. Food Product, New York.

    Google Scholar 

  • Slafer, G.A. & R. Savin, 1994. Source-sink relationship and grain mass at different positions within the spike in wheat. Field Crops Res 37: 39–49.

    Article  Google Scholar 

  • Slafer, G.A., L.G. Abeledo, D.J. Miralles, F.G. González & E.M. Whitechurch, 2001. Photoperiod sensitivity during stem elongation as an avenue to rise potential yield in wheat. Euphytica 119: 191–197.

    Article  Google Scholar 

  • Slafer, G.A., F.H. Andrade & E.H. Satorre, 1990. Genetic improvement in preanthesis physiological attributes related to grain yield. Field Crop Res 23: 255–263.

    Article  Google Scholar 

  • Slafer, G.A., J.L. Araus & R.A. Richards, 1999. Physiological traits that increase the yield potential of wheat. In: E.H. Satorre & G.A. Slafer (Eds.), Wheat. Ecology and Physiology of Yield Determination, pp. 379-415. Food Product Press, New York.

    Google Scholar 

  • Slafer, G.A., D.F. Calderini & D.J. Miralles, 1996. Yield components and compensation in wheat: opportunities for further increasing yield potential. In: M.P. Reynolds, S. Rajaram & A. McNab (Eds.), Increasing yield potential in wheat: Breaking the barriers, pp. 101-133. CIMMYT, México, D.F.

    Google Scholar 

  • Slafer, G.A., E.H. Satorre & F.H. Andrade, 1994. Increases in grain yield in bread wheat from breeding and associated physiological changes. In: G.A. Slafer (Ed.), Genetic Improvement of Field Crops, pp. 1-68. Marcel Dekker, New York.

    Google Scholar 

  • Tollenaar, M. & E.A. Lee, 2002. Yield potential, yield stability and stress tolerance in Maize. Field Crops Res 75: 161–169.

    Article  Google Scholar 

  • Tomaso, J.C., 1996. Cebada cervecera, fechas de siembra, rendimiento y calidad. Instituto Nacional de Tecnología Agropecuaria, Centro Regional Buenos Aires Sur. Actas de la Jornada de Actualización Técnica para Profesionales 2: 5–11.

    Google Scholar 

  • Voltas, J., I. Romagosa, J.L. Araus, 1998. Growth and final weight of central and lateral barley grains under Mediterranean conditions as influenced by sink strength. Crop Sci 38: 84–89.

    Article  Google Scholar 

  • Waddington, S.R., P.M. Cartwright & P.C. Wall, 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot 51: 119–130.

    Google Scholar 

  • Welles, J.M. & J.M. Norman, 1991. Instrument for indirect measurement of canopy architecture. Agron J 83: 818–825.

    Article  Google Scholar 

  • Wych, R.D. & D.C. Rasmusson, 1983. Genetic improvement in malting barley cultivars since 1920. Crop Sci 23: 1037–1040.

    Article  Google Scholar 

  • Zadoks, J.C., T.T. Chang, C.F. Konzak, 1974. A decimal code for the growth stage of cereals. Weed Res 14: 415–421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abeledo, L.G., Calderini, D.F. & Slafer, G.A. Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944–1998). Euphytica 130, 325–334 (2003). https://doi.org/10.1023/A:1023089421426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023089421426

Navigation