Skip to main content
Log in

A strategy to obtain backbone resonance assignments of deuterated proteins in the presence of incomplete amide 2H/1H back-exchange

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Replacement of non-exchangeable protons by deuterons has become a standard tool in structural studies of proteins on the order of 30–40 kDa to overcome problems arising from rapid 1H and 13C transverse relaxation. However, 1H nuclei are required at exchangeable sites to maintain the benefits of proton detection. Protein expression in D2O-based media containing deuterated carbon sources yields protein deuterated in all positions. Subsequent D/H-exchange is commonly used to reintroduce protons in labile positions. Since this strategy may fail for large proteins with strongly inhibited exchange we propose to express the protein in fully deuterated algal lysate medium in 100% H2O. As a side-effect partial Cα protonation occurs in a residue-type dependent manner. Samples obtained by this protocol are suitable for complementary 1HN- and 1Hα-based triple resonance experiments allowing complete backbone resonance assignments in cases where back-exchange of amide protons is very slow after expression in D2O and refolding of chemically denatured protein is not feasible. This approach is explored using a 35-kDa protein as a test case. The degree of Cα protonation of individual amino acids is determined quantitatively and transverse relaxation properties of 1HN and 15N nuclei of the partially deuterated protein are investigated and compared to the fully protonated and perdeuterated species. Based on the deviations of assigned chemical shifts from random coil values its solution secondary structure can be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrowsmith, C.H. and Wu, Y.-S. (1998) Prog. Nucl. Magn. Reson. Spectrosc., 32, 277-286.

    Google Scholar 

  • Bax, A., Griffey, R.H. and Hawkins, B.L. (1983) J. Magn. Reson., 55, 301-315.

    Google Scholar 

  • Bazzo, R., Cicero, D.O. and Barbato, G. (1995) J. Magn. Reson., B107, 189-191.

    Google Scholar 

  • Bendall, M.R., Pegg, D.T. and Doddrell, D.M. (1983) J. Magn. Reson., 52, 81-117.

    Google Scholar 

  • Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett., 69, 185-189.

    Google Scholar 

  • Boisbouvier, J., Gans, P., Blackledge, M., Brutscher, B. and Marion, D. (1999) J. Am. Chem. Soc., 121, 7700-7701.

    Google Scholar 

  • Boucher, W., Laue, E.D., Campbell-Burk, S.L. and Domaille, P.J. (1992) J. Biomol. NMR, 2, 631-637.

    Google Scholar 

  • Boyd, J. and Soffe, N. (1989) J. Magn. Reson., 85, 406-413.

    Google Scholar 

  • Carr, H.Y. and Purcell, E.M. (1954) Phys. Rev., 94, 630-638.

    Google Scholar 

  • Clubb, R.T., Thanabal, V. and Wagner, G. (1992) J. Magn. Reson., 97, 213-217.

    Google Scholar 

  • Constantine, K.L., Mueller, L., Goldfarb, V., Wittekind, M., Metzler, W.J., Yanchunas Jr, J., Robertson, J.G., Malley, M.F., Friedrichs, M.S. and Farmer II, B.T. (1997) J. Mol. Biol., 267, 1223-1246.

    Google Scholar 

  • Czisch, M. and Boelens, R. (1998) J. Magn. Reson., 134, 158-160.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277-293.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553-559.

    Google Scholar 

  • Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293-8297.

    Google Scholar 

  • Eletsky, A., Kienhöfer, A. and Pervushin, K. (2001) J. Biomol. NMR, 20, 177-180.

    Google Scholar 

  • Emsley, L. and Bodenhausen, G. (1990) Chem. Phys. Lett., 165, 469-476.

    Google Scholar 

  • Farmer II, B.T. and Venters, R.A. (1995) J. Am. Chem. Soc., 117, 4187-4188.

    Google Scholar 

  • Farmer II, B.T. and Venters, R.A. (1998) In Biological MagneticResonance, Vol. 16, Krishna, N.R. and Berliner, L.J. (Eds.), Kluwer Academic/Plenum Publishers, New York, NY, pp. 75-120.

    Google Scholar 

  • Fiala, R., Czernek, J. and Sklenář, V. (2000) J. Biomol. NMR, 16, 291-302.

    Google Scholar 

  • Gardner, K.H. and Kay, L.E. (1998) Annu. Rev. Biophys. Biomol. Struct., 27, 357-406.

    Google Scholar 

  • Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Biochemistry, 36, 1389-1401.

    Google Scholar 

  • Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93-141.

    Google Scholar 

  • Griffey, R.H. and Redfield, A.G. (1987) Quart. Rev. Biophys., 19, 51-82.

    Google Scholar 

  • Grzesiek, S. and Bax, A (1992a) J. Magn. Reson., 96, 432-440.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Am. Chem. Soc., 114, 6291-6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993a) J. Biomol. NMR, 3, 185-204.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993b) J. Am. Chem. Soc., 115, 12593-12594.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1995) J. Biomol. NMR, 6, 335-339.

    Google Scholar 

  • Grzesiek, S., Anglister, J., Ren, H. and Bax, A. (1993) J. Am. Chem. Soc., 115, 4369-4370.

    Google Scholar 

  • Grzesiek, S., Kuboniwa, H., Hinck, A.P. and Bax, A. (1995) J. Am. Chem. Soc., 117, 5312-5315.

    Google Scholar 

  • Günther, U.L., Ludwig, C. and Rüterjans, H. (2000) J. Magn. Reson., 145, 201-208.

    Google Scholar 

  • Hartleib, J. and Rüterjans, H. (2001a) Protein Expr. Purif., 21, 210-219.

    Google Scholar 

  • Hartleib, J. and Rüterjans, H. (2001b) Biochim. Biophys. Acta, 1546, 312-324.

    Google Scholar 

  • Hartleib, J., Geschwindner, S., Scharff, E.I. and Rüterjans, H. (2001) Biochem. J., 353, 579-589.

    Google Scholar 

  • Heikkinen, S. and Kilpeläinen, I. (2001) J. Magn. Reson., 151, 314-319.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659-4667.

    Google Scholar 

  • Kay, L.E., Ikura, M. and Bax, A. (1991) J. Magn. Reson., 91, 84-92.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663-10665.

    Google Scholar 

  • Kong, X.M., Sze, K.H. and Zhu, G. (1999) J. Biomol. NMR, 14, 133-140.

    Google Scholar 

  • Konrat, R., Yang, D. and Kay, L.E. (1999) J. Biomol. NMR, 15, 309-313.

    Google Scholar 

  • Kontaxis, G., Clore, G.M. and Bax, A. (2000) J. Magn. Reson., 143, 184-196.

    Google Scholar 

  • Kupče, E.and Freeman, R. (1995) J. Magn. Reson., A115, 273-276.

    Google Scholar 

  • Kushlan, D.M. and LeMaster, D.M. (1993) J. Biomol. NMR, 3, 701-708.

    Google Scholar 

  • Larsson, G., Wijmenga, S. S. and Schleucher, J. (1999) J. Biomol. NMR, 14, 169-174.

    Google Scholar 

  • LeMaster, D.M. (1994) Prog. Nucl. Magn. Reson. Spectrosc., 26, 371-419.

    Google Scholar 

  • LeMaster, D.M. and Richards, F.M. (1988) Biochemistry, 27, 142-150.

    Google Scholar 

  • Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1992) FEBS Lett., 314, 413-418.

    Google Scholar 

  • Löhr, F. and Rüterjans, H. (1995a) J. Biomol. NMR, 6, 189-197.

    Google Scholar 

  • Löhr, F. and Rüterjans, H. (1995b) J. Magn. Reson., B109, 80-87.

    Google Scholar 

  • Löhr, F., Pfeiffer, S., Lin, Y.-J., Hartleib, J., Klimmek, O. and Rüterjans, H. (2000) J. Biomol. NMR, 18, 337-346.

    Google Scholar 

  • Loria, J.P., Rance, M. and Palmer III, A.G. (1999) J. Magn. Reson., 141, 180-184.

    Google Scholar 

  • Marion, D., Ikura, M. and Bax, A. (1989a) J. Magn. Reson., 84, 425-430.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989b) J. Magn. Reson., 85, 393-399.

    Google Scholar 

  • Markus, M.A., Dayie, K.T., Matsudaira, P. and Wagner, G. (1994) J. Magn. Reson., B105, 192-195.

    Google Scholar 

  • Matsuo, H., Kupče, E., Li, H. and Wagner, G. (1996) J. Magn. Reson., B111, 194-198.

    Google Scholar 

  • McCallum, S.A., Hitchens, T.K. and Rule, G.S. (1999) J. Mol. Biol., 285, 2119-2132.

    Google Scholar 

  • McCoy, M.A. and Mueller, L. (1992) J. Magn. Reson., 99, 18-36.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688-691.

    Google Scholar 

  • Mohebbi, A and Shaka, A.J. (1991) Chem. Phys. Lett., 178, 374-378.

    Google Scholar 

  • Montelione, G.T. and Wagner, G. (1990) J. Magn. Reson., 87, 183-188.

    Google Scholar 

  • Morris, G.A. and Freeman, R. (1979) J. Am. Chem. Soc., 101, 760-762.

    Google Scholar 

  • Mulder, F.A.A., Ayed, A., Yang, D., Arrowsmith, C.H. and Kay, L.E. (2000) J. Biomol. NMR, 18, 173-176.

    Google Scholar 

  • Nietlispach, D., Clowes, R.T., Broadhurst, R.W., Ito, Y., Keeler, J., Kelly, M., Ashurst, J., Oschkinat, H., Domaille, P.J. and Laue, E.D. (1996) J. Am. Chem. Soc., 118, 407-415.

    Google Scholar 

  • Palmer III, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 93, 151-170.

    Google Scholar 

  • Patt, S. (1992) J. Magn. Reson., 96, 94-102.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366-12371.

    Google Scholar 

  • Pervushin, K., Wider, G. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 345-348.

    Google Scholar 

  • Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991) J. Magn. Reson., 94, 209-213.

    Google Scholar 

  • Riek, R., Fiaux, J., Bertelsen, E.B., Horwich, A.L. and Wüthrich, K. (2002) J. Am. Chem. Soc., 124, 12144-12153.

    Google Scholar 

  • Rosen, M.K., Gardner, K.H., Willis, R.C., Parris, W.E., Pawson, T. and Kay, L.E. (1996) J. Mol. Biol., 263, 627-636.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 13585-13590.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (2000) J. Am. Chem. Soc., 122, 7543-7548.

    Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K., Senn, H. and Wüthrich, K. (1999a) J. Am. Chem. Soc., 121, 844-848.

    Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K. and Wüthrich, K. (1999b) J. Biomol. NMR, 15, 181-184.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1999c) J. Biomol. NMR, 14, 85-88.

    Google Scholar 

  • Sattler, M. and Fesik, S.W. (1996) Structure, 4, 1245-1249.

    Google Scholar 

  • Scharff, E.I., Koepke, J., Fritzsch, G., Lücke, C. and Rüterjans, H. (2001) Structure, 9, 493-502.

    Google Scholar 

  • Seip, S., Balbach, J. and Kessler, H. (1992) J. Magn. Reson., 100, 406-410.

    Google Scholar 

  • Serber, Z., Ledwidge, R., Miller, S.M. and Dötsch, V. (2001) J. Am. Chem. Soc., 123, 8895-8901.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547-552.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335-338.

    Google Scholar 

  • Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274-293.

    Google Scholar 

  • Shan, X., Gardner, K.H., Muhandiram, D.R., Rao, N.S., Arrowsmith, C.H. and Kay, L.E. (1996) J. Am. Chem. Soc., 118, 6570-6579.

    Google Scholar 

  • Stonehouse, J., Shaw, G.L., Keeler, J. and Laue, E.D. (1994) J. Magn. Reson., A107, 178-184.

    Google Scholar 

  • Swapna, G.V.T., Rios, C.B., Shang, Z. and Montelione, G.T. (1997) J. Biomol. NMR, 9, 105-111.

    Google Scholar 

  • Tessari, M., Gentile, L.N., Taylor, S.J., Shalloway, D.I., Nicholson, L.K. and Vuister, G.W. (1997) Biochemistry, 36, 14561-14571.

    Google Scholar 

  • Tugarinov, V., Muhandiram, R., Ayed, A. and Kay, L.E. (2002) J. Am. Chem. Soc., 124, 10025-10035.

    Google Scholar 

  • Venters, R.A., Farmer II, B.T., Fierke, C.A. and Spicer, L.D. (1996) J. Mol. Biol., 264, 1101-1116.

    Google Scholar 

  • Wang, Y.-X., Jacob, J., Cordier, F., Wingfield, P., Stahl, S.J., Lee-Huang, S., Torchia, D., Grzesiek, S. and Bax, A. (1999) J. Biomol. NMR, 14, 181-184.

    Google Scholar 

  • Weigelt, J. (1998) J. Am. Chem. Soc., 120, 10778-10779.

    Google Scholar 

  • Wienk, H.L.J., Martínez, M.M., Yalloway, G.N., Schmidt, J.M., Pérez, C., Rüterjans, H. and Löhr, F. (2003) J. Biomol. NMR, 25, 133-145.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995) J. Biomol. NMR, 5, 67-81.

    Google Scholar 

  • Wittekind, M. and Mueller, L. (1993) J. Magn. Reson., B101, 201-205.

    Google Scholar 

  • Xia, Y., Kong, X., Smith, D.K., Liu, Y., Man, D. and Zhu, G. (2000) J. Magn. Reson., 143, 407-410.

    Google Scholar 

  • Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 11655-11666.

    Google Scholar 

  • Yamazaki, T., Tochio, H., Furui, J., Aimoto, S. and Kyogoku, Y. (1997) J. Am. Chem. Soc., 119, 872-880.

    Google Scholar 

  • Yang D. and Kay, L.E. (1999a) J. Am. Chem. Soc., 121, 2571-2575.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1999b) J. Biomol. NMR, 14, 273-276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Löhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhr, F., Katsemi, V., Hartleib, J. et al. A strategy to obtain backbone resonance assignments of deuterated proteins in the presence of incomplete amide 2H/1H back-exchange. J Biomol NMR 25, 291–311 (2003). https://doi.org/10.1023/A:1023084605308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023084605308

Navigation