Skip to main content
Log in

Electrostatic Spray Deposition of Perovskite-Type Oxides Thin Films with Porous Microstructure

  • Published:
Journal of Materials Synthesis and Processing

Abstract

The deposition of perovskite-type oxides thin films [La0.8Sr0.2MnO3 and La1−xSrxCo1−yFeyO3 (0 ≦ x ≦ 0.4 and 0 ≦ y ≦ 1)] was investigated using the electrostatic spray deposition (ESD) technique. Lanthanum nitrate, strontium chloride and manganese nitrate, or cobalt nitrate and iron nitrate were dissolved into a mixture of 33 vol% ethanol and 67 vol% butyl carbitol, which was used as precursor solution. The effect of process parameters, such as deposition temperature, deposition time and concentration of precursor solution, on the surface morphology and microstructure of thin films were examined with scanning electron microscope (SEM). The deposited La0.8Sr0.2MnO3 and La1−xSrxCo1−yFeyO3 thin films were amorphous at the used deposition temperature (573K). Subsequently, the samples were heated at 1173 K for 2 h and were studied using X-ray diffraction (XRD). As the result, the crystal structure of the samples transformed to the desired perovskite phase. The chemical analysis of the thin films was investigated using energy dispersion X-ray (EDX) analysis. The observed chemical compositions of the samples were in a fair agreement with the ones of the starting solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).

    Google Scholar 

  2. T. Tsai and S. A. Barnett, Solid State Ionics 93, 207 (1997).

    Google Scholar 

  3. N. Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).

    Google Scholar 

  4. B. W. Chung, E. L. Brosha, F. H. Garzon, I. D. Raistrick, R. J. Houlton, and M. E. Hawley, J. Mater. Res. 10, 2518 (1995).

    Google Scholar 

  5. Y. Tokura, Y. Tomioka, H. Kuwahara, A. Asamitsu, Y. Moritomo, and M. Kasai, J. Appl. Phys. 79, 5288 (1996).

    Google Scholar 

  6. K. Tabata and I. Matsumoto, J. Mater. Sci. 22, 1882 (1987).

    Google Scholar 

  7. R. J. H. Voorhoeve, D. W. Johnson, J. R. Remeika, and P. K. Gallagher, Science 195, 827 (1977).

    Google Scholar 

  8. Y. Teraoka, H. M. Zhang, K. Okamoto, and N. Yamazoe, Mater. Res. Bull. 23, 51 (1988).

    Google Scholar 

  9. Y. Matsumoto, S. Yamada, T. Nishida, and E. Sato, J. Electrochem. Soc. 127, 2360 (1980).

    Google Scholar 

  10. N. Yamazoe and Y. Teraoka, Catal. Today 8, 175 (1990).

    Google Scholar 

  11. S. K. Tiwari, P. Chartier, and R. N. Singh, J. Electrochem. Soc. 142, 148 (1995).

    Google Scholar 

  12. S. K. Tiwari, S. P. Singh, and R. N. Singh, J. Electrochem. Soc. 143, 1505 (1996).

    Google Scholar 

  13. C. M. Chiu and Y. H. Chang, Sensors Actuators B 54, 236 (1999).

    Google Scholar 

  14. V. Dusastre and J. A. Kilner, Solid State Ionics 126, 163 (1999).

    Google Scholar 

  15. J. Y. Gu, K. H. Kim, T. W. Noh, and K. S. Suh, J. Appl. Phys. 78, 6151 (1995).

    Google Scholar 

  16. L. G. Coccia, G. C. Tyrrell, J. A. Kilner, D. Waller, R. J. Chater, and I. W. Boyd, Appl. Surf. Sci. 96–98, 795 (1996).

    Google Scholar 

  17. K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, Solid State Ionics 98, 49 (1997).

    Google Scholar 

  18. G. L. Bertrand, G. Caboche, and L.-C. Dufour, Solid State Ionics 129, 219 (2000).

    Google Scholar 

  19. H. B. Wang, J. F. Gao, D. K. Peng, and G. Y. Meng, Mater. Chem. Phys. 72, 297 (2001).

    Google Scholar 

  20. K. L. Choy, S. Charojrochkul, and B. C. H. Steele, Solid State Ionics 96, 49 (1997).

    Google Scholar 

  21. P. Charpentier, P. Fragnaud, D. M. Schleich, and E. Gehain, Solid State Ionics 135, 373 (2000).

    Google Scholar 

  22. Y. L. Chai, D. T. Ray, H. S. Liu, C. F. Dai, and Y. H. Chang, Mater. Sci. Eng. A293, 39 (2000).

    Google Scholar 

  23. C. H. Chen, A. A. J. Buysman, E. M. Kelder, and J. Schoonman, Solid State Ionics 80, 1 (1995).

    Google Scholar 

  24. J. Schoonman and E. M. Kelder, J. Power Sources 68, 65 (1997).

    Google Scholar 

  25. C. H. Chen, E. M. Kelder, and J. Schoonman, J. Power Sources 68, 377 (1997).

    Google Scholar 

  26. C. H. Chen, E. M. Kelder, M. J. G. Jak, and J. Schoonman, Solid State Ionics 86–88, 1301 (1996).

    Google Scholar 

  27. C. H. Chen, E. M. Kelder, and J. Schoonman, J. Mater. Sci. 31, 5437 (1996).

    Google Scholar 

  28. A. M. Ganan-Calvo, J. Aerosol Sci. 25, Suppl. 1 S309 (1994).

    Google Scholar 

  29. C. H. Chen, E. M. Kelder, P. J. J. M. van der Put, and J. Schoonman, J. Mater. Chem. 6, 765 (1996).

    Google Scholar 

  30. I. Taniguchi, R. C. van Landschoot, H. Huang, and J. Schoonman, Proceedings of the Fifth European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, July 1–5, 2002, Vol. 1, pp. 297–304.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Taniguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, I., Schoonman, J. Electrostatic Spray Deposition of Perovskite-Type Oxides Thin Films with Porous Microstructure. Journal of Materials Synthesis and Processing 10, 267–275 (2002). https://doi.org/10.1023/A:1023046210203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023046210203

Navigation