Skip to main content
Log in

Synthesis and Opto-Electronic Properties of Cholesteric Cellulose Esters

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cholesteric materials display unique optical properties which can be exploited in opto-electronic applications such as light emitting diodes. The key feature is the position of the wavelength of the emitted light relative to the one of the selective reflection band. We have synthesized a set of cellulose derivatives displaying the cholesteric phase with the aim to investigate the correlation between chemical structure and properties. Phase transition temperatures, the chain packing, the wavelength of selective reflection but also absorption and fluorescence spectra were investigated as a function of the degree of substitution (DS), the nature of lateral substituents, the composition of doped systems and blends of different cellulose derivatives. Investigated were furthermore the degree of circular polarization of the emitted light for guest–host systems and for cellulose systems with chromophores linked by covalent bonds to the cellulose backbone as well as their performance in light emitting diodes. The conclusion is that the optical properties can be accounted for on the basis of the model of a one-dimensional photonic crystal. The limiting factor with respect to opto-electronic applications is the poor control of the uniformity of the helix formation and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arici E., Greiner A., Hou H.Q., Reuning A. and Wendorff J.H. 2000. Optical properties of guest host systems based on cellulose derivatives. Macromol. Chem. Phys. 201: 2083-2090.

    Google Scholar 

  • Bouman M.M. and Meijer E.W. 1995. Stereomutation in opticallyactive regioregular polythiophenes. Adv. Mater. 7: 385-387.

    Google Scholar 

  • Braun D. and Heeger A.J. 1991. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58: 1982-1984.

    Google Scholar 

  • Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., Mackay K., Friend R.H., Burns P.L. and Holmes A.B. 1990. Light emission diodes based on conjugated polymers. Nature 347: 539-541.

    Google Scholar 

  • Chandrasekhar S. 1992. Liquid Crystals. 2nd edn. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Chen S.H., Katsis D., Schmid A.W., Mastrangelo J.C., Tsutsui T. and Blanton T.N. 1999. Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films. Nature 397: 506-508.

    Google Scholar 

  • Cimrova V., Remmers M., Neher D. and Wegner G. 1996. Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique. Adv. Mater. 8: 146-149.

    Google Scholar 

  • Clauswitz K.U., Geffarth F., Greiner A., Luessem G. and Wendorff J.H. 2000. Polarized electroluminescence from liquid crystalline polymers. Synth. Met. 111: 169-171.

    Google Scholar 

  • de Vries H. 1951. Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr. 4: 219-226.

    Google Scholar 

  • Dickmann A., Bässler H. and Borsenberger P.M. 1993. An assessment of the role of dipoles on the density of states function of disordered molecular solids. J. Chem. Phys. 99: 8136-8141.

    Google Scholar 

  • Fiesel R. and Scherf U. 1998. A chiral poly(paraphenyleneethynylene) (PPE) derivative. Macromol. Rapid Commun. 19: 427-431.

    Google Scholar 

  • Fiesel R., Huber J. and Scherf U. 1996. Synthesis of an optically active poly(para-phenylene) ladder polymer. Angew. Chem. Int. Ed. Engl. 35: 2111-2113.

    Google Scholar 

  • Finkelmann H., Kim S.T., Munoz A., Palffy-Muhoray P. and Taheri B. 2001. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13: 1069-1072.

    Google Scholar 

  • Friedrich J. and Haarer D. 1984. Photochemical hole burning-a spectroscopic study of relaxation processes in polymers and glasses. Angew. Chem. Int. Ed. Engl. 23: 113-140.

    Google Scholar 

  • Grell M. and Bradley D.D.C. 1999. Polarized luminescence from oriented molecular materials. Adv. Mater. 11: 895-905.

    Google Scholar 

  • Grell M., Knoll W., Lupo D., Meisel M., Miteva T., Neher D., Nothofer H.G., Scherf U. and Yasuda A. 1999. Blue polarized electroluminescence from a liquid crystalline polyfluorene. Adv. Mater. 11: 671-675.

    Google Scholar 

  • Hesse R., Hofberger W. and Bässler H. 1980. Absorption spectra of disordered solid tetracene and pentacene. Chem. Phys. 49: 201-211.

    Google Scholar 

  • Hosokawa C., Kawasaki N., Sakamoto S. and Kusumoto T. 1992. Bright blue electroluminescence from hole transporting polycarbonate. Appl. Phys. Lett. 61: 2503-2505.

    Google Scholar 

  • Hou H., Reuning A., Wendorff J.H. and Greiner A. 2000. Tuning of the pitch height of thermotropic cellulose esters. Macromol. Chem. Phys. 201: 2050-2054.

    Google Scholar 

  • Il'chisin I.P., Tikhonov E.A., Tishchenko V.G. and Shpak M.T. 1981. Generation of a tunable radiation by impurity cholesteric liquid-crystals. JETP Lett. 1: 24-27.

    Google Scholar 

  • Katsis D., Schmid A.W. and Chen S.H. 1999. Mechanistic insight into circularly polarized photoluminescence from a chiralnematic film. Liq. Cryst. 26: 181-185.

    Google Scholar 

  • Katsis D., Kim D.U., Chen H.P., Rothberg L.J., Chen S.H. and Tsutsui T. 2001. Circularly polarized photoluminescence from gradient-pitch chiral-nematic films. Chem. Mater. 13: 643-647.

    Google Scholar 

  • Kelker H. and Hatz H. 1980. Handbook of Liquid Crystals. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Kopp V.I., Fan B., Vithana H.K.M. and Genack A.Z. 1998. Lowthreshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23: 1707-1709.

    Google Scholar 

  • Lee J.L., Pearce E.M. and Kwei T.K. 1997. Morphological development in alkyl-substituted semiflexible polymers. Macromolecules 30: 8233-8244.

    Google Scholar 

  • Lin-Liu Y.R., Shih Y.M., Woo C.-W. and Tan H.T. 1976. Molecular model for cholesteric liquid crystals. Phys. Rev. A 14: 445-450.

    Google Scholar 

  • Lippert E. 1954. Einfluss des Lösungsmittels auf die Absorption der Fluoreszenzspektren substituierter Nitrostilbene. Angew. Chem. 66(2): 57.

    Google Scholar 

  • Lüssem G. and Wendorff J.H. 1998. Liquid crystalline materials for light-emitting diodes. Polym. Adv. Tech. 9: 443-460.

    Google Scholar 

  • Mainusch K.-J. and Stegemeyer H. 1972. Induction of Cotton effect by influence of cholesteric solution phase on achiral molecules. Z. Phys. Chem. NF 77: 210-213.

    Google Scholar 

  • Mainusch K.-J. and Stegemeyer H. 1974. Influence of molecular geometry on fluorescence-circular polarization in cholesteric phases. Ber. Bunsen-Gesellschaft 78: 927-929.

    Google Scholar 

  • Mainusch K.-J., Pollmann P. and Stegemeyer H. 1973. Circular polarization of fluorescence of achiral molecules in cholesteric mesophases. Naturwissenschaften 60: 48-49.

    Google Scholar 

  • Mainusch K.-J., Pollmann P. and Stegemeyer H. 1976. Circular polarization of fluorescence of achiral molecules in cholesteric liquid-crystals. Z. Phys. Chem. NF 103: 295-309.

    Google Scholar 

  • Marks R., Biscarini F., Zambiani R. and Taliani C. 1995. Polarized electroluminescence from vacuum-grown organic light-emitting diodes. Europhys. Lett. 32: 523-528.

    Google Scholar 

  • Maroncelli M. and Fleming G.R. 1987. Picosecond solvation dynamics of Coumarin 153-the importance of molecular aspects of solvation. J. Chem. Phys. 86: 6221-6239.

    Google Scholar 

  • Oseen C.W. 1933. Theory of liquid crystals. Trans. Faraday Soc. 29: 883-888.

    Google Scholar 

  • Peeters E., Delmotte A., Janssen R.A.J. and Meijer E.W. 1997. Chiroptical properties of poly 2,5-bis[(S)-2-methylbutoxy]-1,4-phenylene vinylene. Adv. Mater. 9: 493-496.

    Google Scholar 

  • Reichhardt C. 1988. Solvents and Solvent Effects in Organic Chemistry. 2nd edn. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Richert R. 1994. In: Richert R. and Blumen A. (eds), Disorder Effects on Relaxation Properties. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Rodriguez-Parada J.M., Duran R. and Wegner G. 1989. A comparative study of mesophase formation in rigid chain polyesters with flexible side-chains. Macromolecules 22: 2507-2516.

    Google Scholar 

  • Schmidtke J., Stille W., Finkelmann H. and Kim S.T. 2002. Laser emission in a dye doped cholesteric polymer network. Adv. Mater. 14: 746-749.

    Google Scholar 

  • Shi H., Conger B.M., Katsis D. and Chen S.H. 1998. Circularly polarized fluorescence from chiral nematic liquid crystalline films: theory and experiment. Liq. Cryst. 24: 163-172.

    Google Scholar 

  • Smets G. 1983. Photochromic phenomena in the solid-phase. Adv. Polym. Sci. 50: 17-44.

    Google Scholar 

  • Stegemeyer H. (Guest Ed.) 1993. Liquid Crystals. Steinkopf-Verlag, Darmstadt, Germany.

    Google Scholar 

  • Stegemeyer H. and Finkelmann H. 1973. Treatment of cholesteric liquid-crystalline mixtures by means of Goossens theory. Chem. Phys. Lett. 23: 227-232.

    Google Scholar 

  • Stegemeyer H. and Mainusch K.-J. 1972. Induction of optical activity in nematic mesophase by L-menthol-optical properties of liquid-crystalline mixtures. Chem. Phys. Lett. 16: 38-42.

    Google Scholar 

  • Stegemeyer H., Stille W. and Pollmann P. 1979. Circular fluorescence polarization of achiral molecules in cholesteric liquidcrystals. Israel J. Chem. 18: 312-317.

    Google Scholar 

  • Tseng S., Laivins G. and Gray D. 1982. Propanoate esters of (2-hydroxypropyl)cellulose-a thermotropic cholesteric polymer that reflects visible light at ambient temperatures. Macromolecules 15: 1262-1264.

    Google Scholar 

  • Voigt M., Chambers M. and Grell M. 2001. On the circular polarization of fluorescence from dyes dissolved in chiral nematic liquid crystals. Chem. Phys. Lett. 347: 173-177.

    Google Scholar 

  • Voigt M., Chambers M. and Grell M. 2002. Circularly polarized emission from a narrow bandwidth dye doped into a chiral nematic liquid crystal. Liq. Cryst. 29: 653-656.

    Google Scholar 

  • Williams G.D. 1987. In: Chemla D.S. and Zyss J. (eds), Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. I. Academic Press, New York, p. 405.

    Google Scholar 

  • Zugenmaier P. 1998. In: Demus D. and Goodby J. (eds), Cellulosic Liquid Crystals. Handbook of Liquid Crystals, Vol. 3. Wiley VCH, Weinheim, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, A., Hou, H., Reuning, A. et al. Synthesis and Opto-Electronic Properties of Cholesteric Cellulose Esters. Cellulose 10, 37–52 (2003). https://doi.org/10.1023/A:1023038303103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023038303103

Navigation