Skip to main content
Log in

Recommended Specific Heat Capacity Functions of Group VA Elements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the possibility of representing specific heat capacities of the three metals comprising Group VA of the periodic table: vanadium, niobium and tantalum, with polynomials, from ambient temperature to close to their melting point temperatures. The analysis was based on available literature data including experimental studies of these metals at the Thermophysical Properties Laboratory of the “Vinča” Institute using millisecond resolution pulse calorimetry. This work has resulted in recommended functions obtained by analysis of existing experimental data. A critical analysis of methods used in obtaining these data, pointing to possible inherent sources of systematic errors that might influence their reliability, resulted in preferential weights of different data sets. Possible use of these three metals as candidates for specific heat capacity standard reference materials is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. K. Kirby, in Compendium of Thermophysical Property Measurement Methods Vol. 2: Recommended Measurement Techniques and Practices, K. D. Maglić, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum Press, New York, 1992), pp. 627-633.

    Google Scholar 

  2. A. S. Dobrosavljević, Ph.D. thesis (University of Belgrade, 1989).

  3. A. S. Dobrosavljević and K. D. Maglić, High Temp.-High Press. 21:411(1989).

    Google Scholar 

  4. K. D. Maglić, A. S. Dobrosavljević, N. Lj. Perović, A. M. Stanimirović, and G. S. Vuković, High Temp.-High Press. 27/28:389(1995/1996).

    Google Scholar 

  5. A. M. Stanimirović, G. S. Vuković, and K. D. Maglić, Int. J. Thermophys. 20:325(1999).

    Google Scholar 

  6. K. D. Maglić, N. Lj. Perović, G. S. Vuković, and Lj. P. Zeković, Int. J. Thermophys. 15:963(1994).

    Google Scholar 

  7. N. D. MiloŠević, G. S. Vuković, D. Z. PaviČić, and K. D. Maglić, Int. J. Thermophys. 20:1129(1999).

    Google Scholar 

  8. N. Lj. Perović, K. D. Maglić, and G. S. Vuković, Int. J. Thermophys. 17:1047(1996).

    Google Scholar 

  9. K. D. Maglić, N. Lj. Perović, and G. S. Vuković, High Temp.-High Press. 29:97(1997).

    Google Scholar 

  10. Ya. Kraftmakher, Lecture Notes on Equilibrium Point Defects and Thermophysical Properties of Metals (World Scientific, Singapore, 2000).

    Google Scholar 

  11. R. A. MacDonald and R. C. Shukla, Phys. Rev. B 32:4961(1985).

    Google Scholar 

  12. A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Std. (U.S.) 75A:283(1971).

    Google Scholar 

  13. K. Maier, M. Peo, B. Saile, H.-E. Schaefer, and A. Seeger, Phil. Mag. A 40:701(1979).

    Google Scholar 

  14. A. Fernandez Guillermet and G. Grimvall, Phys. Rev. B 44:4332(1991).

    Google Scholar 

  15. N. M. Plakida, Sov. Phys. Solid State 11:561(1969).

    Google Scholar 

  16. G. K. White, Physica B 149:255(1988).

    Google Scholar 

  17. D. N. Kagan, in Compendium of Thermophysical Property Measurement Methods Vol. 1: Survey of Measurement Techniques, K. D. Maglić, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum Press, New York, 1984), pp. 461-526.

    Google Scholar 

  18. R. E. Taylor and R. A. Finch, J. Less-Common Metals 6:283(1964).

    Google Scholar 

  19. A. Cezairliyan, J. Res. Natl. Bur. Std. (U.S.) 75C:7(1971).

    Google Scholar 

  20. F. Righini, R. B. Roberts, and A. Rosso, Int. J. Thermophys. 6:681(1985).

    Google Scholar 

  21. Y. Kraftmakher, Physics Reports 356 (Elsevier, Amsterdam, 2002), pp. 1-117.

    Google Scholar 

  22. T. B. Douglas and E. G. King, in Experimental Thermodynamics, Vol. I, Calorimetry of Non-reacting Systems, J. P. McCullough and D. W. Scott, eds. (Butterworths, London, 1968), pp. 293-332.

    Google Scholar 

  23. V. A. Kirillin, A. E. Sheindlin, and V. Ya. Chekhovskoi, High Temp. 3:801(1965).

    Google Scholar 

  24. A. E. Sheindlin, B. Ya. Berezin, and V. Ya. Chekhovskoi, High Temp.-High Press. 4:611(1972).

    Google Scholar 

  25. Z. Bieganski and B. Stalinski, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 9:367(1961).

    Google Scholar 

  26. C. T. Anderson, J. Am. Chem. Soc. 58:564(1936).

    Google Scholar 

  27. F. M. Jaeger and W. A. Veenstra, Rec. Trav. Chim. 53:6777(1934).

    Google Scholar 

  28. I. B. Fieldhouse and J. I. Lang, Report WADD TR 60-904, [AD268304] (1961).

  29. W. Bendick and W. Pepperhoff, J. Phys. F: Met. Phys. 12:1085(1982).

    Google Scholar 

  30. A. Cezairliyan, F. Righini, and J. L. McClure, J. Res. Nat. Bur. Stand. (U.S.) 78A:143(1974).

    Google Scholar 

  31. Yu. M. Golutvin and T. M. Kozlovskaya, J. Phys. Chem. (Russ.) 36:362(1962).

    Google Scholar 

  32. I. I. Novikov, V. V. Roshchupkin, A. G. Mozgovoi, and N. A. Semashko, High Temp. Thermophys. (Russ.) 19:958(1981).

    Google Scholar 

  33. Ya. A. Kraftmakher, “Vacancy Formation in Niobium,” Solid State Physics (Russ.) 5:950(1963).

    Google Scholar 

  34. G. I. Mozharov and A. I. Savvatimskii, High Temp. Thermophys. (Russ.) 19:954(1981).

    Google Scholar 

  35. A. Cezairliyan, J. Res. Nat. Bur. Std. (U.S.) 75A:565(1971).

    Google Scholar 

  36. Ya. A. Kraftmakher, Private communication (1994).

  37. A. L. Reimann and C. K. Grant, Phil. Mag. 22:49(1936)

    Google Scholar 

  38. A. P. Grischuk, E. B. Zaretski, M. N. Kalyuzhni, L. N. Latyev, S. V. Onufriev, V. A. Petukhov, V. E. Peletski, D. V. Tivadze, V. Ya. Chekhovskoi, A. V. Elyutin, M. I. Ivanova, L. I. Voronenko, and A. G. Libinson, Tables of Standard Reference Data, Niobium. Physical Properties, GSSSD 121-88 (1988) (in Russian)

  39. K. Boboridis, Int. J. Thermophys. 23:277(2002).

    Google Scholar 

  40. K. Clusius, P. Franzosini, and U. Piesbergen, Z. Naturforschg. 15a:728(1960).

    Google Scholar 

  41. C. Chou, D. White, and H. L. Johnston, Phys. Rev. 109:788(1958).

    Google Scholar 

  42. G. W. Lehman, WADD TR 60581 1-19, data in: Thermophysical Properties of Matter, Vol. 4, Y. S. Touloukian, and E. H. Buyco, eds. (IFI/Plenum, New York, 1970), p. 223.

    Google Scholar 

  43. A. A. Kulish and L. P. Phylippov, High Temp. Thermophys. (Russ.) 16:602(1978).

    Google Scholar 

  44. A. Cezairliyan, J. L. McClure, and C. W. Beckett, J. Res. Nat. Bur. Stand. (U.S.) 75A:1(1971).

    Google Scholar 

  45. N. S. Rasor and J. D. McClelland, J. Chem. Phys. Solids 15:17(1960).

    Google Scholar 

  46. G. C. Lowenthal, Aust. J. Phys. 16:47(1963).

    Google Scholar 

  47. M. Hoch and H. L. Johnston, J. Chem. Phys. 65:855(1961).

    Google Scholar 

  48. D. White, C. Chou, and H. L. Johnston, Phys. Rev. 109:797(1958).

    Google Scholar 

  49. K. F. Sterrett, Ph.D. thesis, Univ. of Pittsburgh Univ. Microfilms Publ. 22865, 1-119, data in Thermophysical Properties of Matter, Vol. 4, Y. S. Touloukian and E. H. Buyco, eds. (IFI/Plenum, New York, 1970), pp. 1-223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglić, K.D. Recommended Specific Heat Capacity Functions of Group VA Elements. International Journal of Thermophysics 24, 489–500 (2003). https://doi.org/10.1023/A:1022976122789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022976122789

Navigation