Skip to main content
Log in

Numerical Modeling of the Compaction of Powder Articles of Complex Shape in Rigid Dies: Effect of Pressing Method on Density Distribution. 1. Mechanical Model of Powder Densification

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

A theory of plasticity of a porous body was formulated taking into account the specifics of powder behavior under pressing. The proposed model of the material under compression is one-parameter with all functions depending on the current density. In order to determine the parameters of the model, use was made of the equilibrium density attained during the compression of an unbonded powder body, that value of density beyond which further deformation is not accompanied by volume change. Methods for determining the material parameters of the model are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Vinogradov and I. D. Radomysel'skii, Pressing and Rolling Metal-Ceramic Materials[in Russian], Mashgiz, Moscow, Kiev (1963).

    Google Scholar 

  2. G. M. Zhdanovich, Theory of Pressing Metal Powders[in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

  3. V. E. Perel'man, Shaping Powder Materials[in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  4. M. B. Shtern, G. G. Serdyuk, L. A. Maksimenko, et al., Phenomenological Theory of Powder Pressing[in Russian], Nauk. Dumka, Kiev (1982).

    Google Scholar 

  5. G. L. Petrosyan, G. G. Nersesyan, S. A. Malkhasyan, and A. S. Petrosyan, “Densification of porous materials in rigid conical and cylindrical dies,” Poroshk. Metall. No. 5, 22–27 (1982).

    Google Scholar 

  6. G. M. Zhdanovich, V. A. Sidorov, and Ch. A. Yakubovskii, “Distribution of pressure and density in articles of complex configuration,” Poroshk. Metall. No. 4, 21–22 (1982).

    Google Scholar 

  7. I. D. Radomysel'skii, E. L. Pechentkovskii, and G. G. Serdyuk, Molds for Powder Metallurgy: Calculation and Design[in Russian], Technika, Kiev (1970).

    Google Scholar 

  8. M. Yu. Bal'shin, Powder Metallurgy[in Russian], Metallurizdat, Moscow (1948).

    Google Scholar 

  9. I. D. Radomysel'skii and E. L. Pechentkovskii, “Effect of the interaction of deforming elements on the density distribution in metal powder articles,” in Theory and Practice of Compacting Processes[in Russian], Institute for Problems of Materials Science, Acad. Sci. UkrSSR, Kiev (1976), pp. 61–65.

    Google Scholar 

  10. I. D. Radomysel'skii and E. L. Pechentkovskii, “Effect of the pressing tool on the porosity distribution in metalceramic articles of the bushing type,” Poroshk. Metall. No. 4, 13–19 (1970).

    Google Scholar 

  11. T. I. Aksenov and A. N. Sorokin, “Method for obtaining curves of densification allowing for losses due to external friction,” Poroshk. Metall. No. 9, 20–22 (1968).

    Google Scholar 

  12. I. D. Radomysel'skii, E. L. Pechentkovskii, G. G. Serdyuk, et al., “Distribution of density and pressing pressure in various schemes for pressing bushings,” Poroshk. Metall. No. 1, 6–12 (1982).

    Google Scholar 

  13. E. A. Olevskii, M. B. Shtern, G. G. Serdyuk, and O. V. Mikhailov, “Determination of the density field in the pressing of articles with complicated shapes by the penetrating elements method,” Poroshk. Metall. No. 3, 15–21 (1989).

    Google Scholar 

  14. M. B. Shtern, G. G. Serdyuk, E. A. Olevskii, and O. V. Mikhailov, “Use of split punches in the production of powder articles with stepped shapes. Theoretical analysis,” Poroshk. Metall. No. 4, 26–31 (1989).

    Google Scholar 

  15. D. T. Gethin, D. V. Tram, A. K. Ariffin, and R. W. Lewis, “An investigation of powder compaction processes,” Int. J. Powder Metall. 30 No. 4, 385 (1994).

    Google Scholar 

  16. G. Coccoz, M. Bellet, R. Lecot, et al., “Cold compaction of iron powder: experiments and simulation,” Proc. Powder Metallurgy World Congress and Exhibition Les Editions de Physique Les Ulis, Cedex A, Grenoble (1994), Vol. 1, p. 709.

    Google Scholar 

  17. H. A. Haggblad and M. Oldenburg, “Modeling and simulation of metal powder die pressing with use f of explicit time integration,” in: Modeling Simulation of Material Science Engineering Vol. 2 (1994).

  18. J. Kergadallan, G. Puente, P. Doremus, and E. Pavier, “Compression of an axisymmetric part with an instrumented press,” Proc. Int. Workshop on “Modelling of Metal Powder Forming Processes,”Grenoble (1997), pp. 277-285.

  19. E. J. Bagley, D. M. M. Guyoncourt, B. Moss, et al., “Measuring density variations in powder compacts,” Report AEAT-4536 AEA Technology, Culham, UK (1998).

    Google Scholar 

  20. W. R. Lewis and B. A. Schreffler, The Finite Element Method in the Deformation and Consolidation of Porous Media Wiley, New York (1987).

    Google Scholar 

  21. E. Pavier and P. Doremus, “Comparison between constitutive equations modeling the compaction of iron powder and experimental data obtained with triaxial tests,” in: Proc. Int. Workshop onModeling of Metal Powder Forming Processes” Grenoble (1997), pp. 1-8.

  22. O. Coube, “Modeling and numerical simulation of powder die compaction with consideration of cracking,” PhD. Thesis, University Pierre et Marie Curie, Paris (1998).

    Google Scholar 

  23. B. Wikman, H. A. Haggblad, and M. Oldenburg, Proc. Int. Workshop on “Modeling of Metal Powder Forming Processes” Grenoble (1997), pp. 149-157.

  24. E. Pavier and P. Doremus, “Friction behavior of an iron powder investigated with two different apparatus,” Proc. Int. Workshop onModeling of Metal Powder Forming Processes” Grenoble (1997), pp. 335-344.

  25. E. Pavier and P. Doremus, “Triaxial characterization of iron powder,” Powder Metallurgy 42 No. 4, 345–352 (1999).

    Google Scholar 

  26. PM Modnet Computer modelling group, state of the art review: comparison of computer models representing powder compaction process, Powder Metallurgy 42 No. 4, 301–311 (1999).

    Google Scholar 

  27. V. D. Rud' and V. Z. Midukov, “Experimental verification of hypotheses of plasticity of porous bodies,” Poroshk. Metall. No. 1, 14–20 (1982).

    Google Scholar 

  28. K. H. Roscoe, A. N. Schofield, and C. P. Wroth, “On the yielding of Soils,” Geotechnique 9 71–92 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtern, M.B., Mikhailov, O.V. Numerical Modeling of the Compaction of Powder Articles of Complex Shape in Rigid Dies: Effect of Pressing Method on Density Distribution. 1. Mechanical Model of Powder Densification. Powder Metallurgy and Metal Ceramics 41, 581–587 (2002). https://doi.org/10.1023/A:1022928118809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022928118809

Navigation