Skip to main content
Log in

Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling Study

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The direct non-oxidative conversion of methane to higher hydrocarbons in dielectric barrier discharges has been investigated theoretically at atmospheric pressure. Preliminary modeling of the results is presented, based on a well-stirred reactor model to determine the spatially and time-averaged species composition through the solution of balance equations for species, mass, gas and electron energy. The results show good quantitative agreement between model predications and experimental measurements by considering the glow and after-glow regions. Moreover, the model has predicted that there exists a transition where the main product of ethane will transform to acetylene by increasing the specific energy. The dominant reaction paths and the possibility of selective to C2 hydrocarbons have been discussed. A list of gas-phase reactions has been compiled for modeling methane conversion in non-thermal plasma and can be employed in more sophisticated two- or three-dimensional plasma simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Yang, “Direct non-oxidative methane conversion by non-thermal plasma: experimental study”, Plansa Chem. Plasma Process. (submitted).

  2. L. E. Kline and M. J. Kushner, Solid State Mat. Sci. 16, 1(1989).

    Google Scholar 

  3. A. Rhallabi and Y. Catherine, IEEE Trans. Plasma Sci. 19, 270(1991).

    Google Scholar 

  4. E. Gogolides, D. Mary, A. Rhallabi, and G. Turban, Jpn. J. Appl. Phys. 34, 261(1995).

    Google Scholar 

  5. K. Nagayama, B. Farouk, and Y. H. Lee, IEEE Trans. Plasma Sci. 26, 125(1998).

    Google Scholar 

  6. K. Bera, B. Farouk and P. Vitello, J. Phys. D: Appl. Phys. 34, 1479–1490 (2001).

    Google Scholar 

  7. R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia National Laboratories, Report No. SAND87–8215B (1990).

  8. E. Meeks and J. W. Shon, IEEE Transactions on Plasma Science 23, 539(1995).

    Google Scholar 

  9. E. Meeks, H. K. Moffat, J. F. Grcar and R. J. Kee, Sandia National Laboratories, Report No. SAND96–8218 (1996), Albuquerque, NM: Sandia National Laboratories.

    Google Scholar 

  10. R. J. Kee, F. M. Rupley, E. Meeks and J. A. Miller, Sandia National Laboratories, Report No. SAND96–8216 (1996), Albuquerque, NM: Sandia National Laboratories.

    Google Scholar 

  11. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15(3), 1087(1986).

    Google Scholar 

  12. M. Frenklach and H. Wang, Phys. Rev. B43, 1520(1991).

    Google Scholar 

  13. W. Tsang, J. Phys. Chem. Ref. Data 17(2), 887(1988).

    Google Scholar 

  14. A. Andres, A Formulary for Plasma Physics, Akademic (1990), p. 83.

  15. W. L. Morgan and B. M. Penetrante, Comput. Phys. Commun. 58, 127(1990).

    Google Scholar 

  16. K. Tachibana, M. Nishida, H. Harima and Y. Urano, J. Phys. D: Appl. Phys. 17, 1727–1742 (1984).

    Google Scholar 

  17. R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia National Laboratories, Report No. SAND87–8215B (1990).

  18. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Trob, R. W Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 21(3, 411–734 (1992).

    Google Scholar 

  19. M. D. Allendorf, C. F. Melius, P. Ho and M. R. Zachariah, J. Phys. Chem. 99, 15285(1995).

    Google Scholar 

  20. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14, Suppl. No. 1, 1(1985).

    Google Scholar 

  21. S. E. Stein, NIST Standard Reference Database 25: Structures and Properties, National Institute of Standards and Technology, U.S. Department of Commerce (1994).

  22. B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19(2), 309(1991).

    Google Scholar 

  23. E. Meeks and R. Larson, J. Vac. Sci. Technol. A. 16(2), 554(1998).

    Google Scholar 

  24. Y. Yang, Ind. Eng. Chem. Res. 41, 5918–5928 (2002).

    Google Scholar 

  25. Y. L. M. Creyghton, Ph.D. thesis, Eindhoven (1994).

  26. H. Saito and L. E. Scriven, J. Computat. Phys. 42, 53(1981).

    Google Scholar 

  27. A. Oumghar, J. C. Legrand, A. M. Diamy, and N. Turillon. Plasma Chem. Plasma Process. 15, 87(1995).

    Google Scholar 

  28. W. L. Morgan, Plasma Chem. Plasma Process. 12, 477(1992).

    Google Scholar 

  29. M. Hayashi, in Swarm Studies and Ineleastic Electron-Molecule Collisions, L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds. Springer-Verlag, New York (1987).

    Google Scholar 

  30. M. Hayashi, in Nonequilibrium Processes in Partially Ionized Gases, M. Capitelli and J. N. Bardsley, eds. Plenum Press, New York (1990).

    Google Scholar 

  31. D. K. Davis, L. E. Kline and W. E. Bies, J. Appl. Phys. 65, 70(1989).

    Google Scholar 

  32. G. Drabner, A. Poppe and H. Budzikiewicz, Int. J. Mass Spectrum. Ion. Proc. 97, 1(1990).

    Google Scholar 

  33. R. K. Janev, W. D. Langer, K. Evans, and D. E. Post, Elementary Processes in Hydrogen Helium Plasma, Springer-Verlag, New York, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y. Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling Study. Plasma Chemistry and Plasma Processing 23, 327–346 (2003). https://doi.org/10.1023/A:1022924220062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022924220062

Navigation