Skip to main content
Log in

Evaluation of Material Biodegradability in Real Conditions–Development of a Burial Test and an Analysis Methodology Based on Numerical Vision

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

This work validated a burial protocol for in situ testing and presents a robust, repeatable and time-saving technique to measure degraded areas in the sample, i.e. an image analysis method. 1440 specimens of degraded samples have been compiled in a data base. To this end, twenty samples presenting different levels of biodegradability (i.e. PHBV/HV, PLA, PCL, PCL-Starch, paper, PE, PE-Starch) were buried at 4 different locations and then disinterred at 4, 6, 9, 12, 18, and 24-month intervals. The biodegradation levels of these samples were determined by computing weight and area loss. Weight loss was measured after careful cleaning, whereas area loss was quantified using image analysis. Image analysis gives reliable information on visual pollution while only requiring a rudimentary and thus quicker cleaning of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. E. Guillet, H. X. Huber and J. Scott (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.). Biodegradable Polymers and Plastics Royal Society of Chemistry, Cambridge, pp. 55–70.

    Google Scholar 

  2. S. Letang and S. Pasquier (1997) in report “Gisement et valorisation des emballages en France” A.D.E.M.E. 2902, 11 p.

    Google Scholar 

  3. Directive 94/62/EC (1994) Off. J. Europ. Communities L364, 10–23.

    Google Scholar 

  4. J. M. Mayer and D. L. Kaplan (1994) Trends Polym. Sci. 2, 227–235.

    Google Scholar 

  5. E. Chiellini and R. Solaro (1996) Adv. Mater. 8, 305–313.

    Google Scholar 

  6. C. Clicquot de Mentque (1998) Environnement magasine 1566, 54–55.

    Google Scholar 

  7. R. P. Goheen and R. P. Wool (1991) J. of Environ. Polym. Degr. 42, 2691–2701.

    Google Scholar 

  8. A. Yabannar and R. Bartha (1993) Soil Biol. Biochem. 25, 1469–75.

    Google Scholar 

  9. A. Yabannar and R. Bartha (1994) Appl. Environ. Microbiol. 3608–3614.

  10. G. T. G. Keursten and P. H. Groenevelt (1996) Biodegradation 7, 329–333.

    Google Scholar 

  11. H. Eya, N. Iwaki, Y. Otsuji (1994) in Y. Doi and K. Fukuda (Eds.). Biodegradable Polymers and Plastics, Elsevier, Amsterdam-London-New York-Tokyo, pp. 337–344.

    Google Scholar 

  12. S. Akahori, Z. Osawa (1994) Polym. Degrad. Stab. 45, 261–265.

    Google Scholar 

  13. H. Sawada (1994) in Y. Doi and K. Fukuda (Eds.) Biodegradable Polymers and Plastics, Elsevier, Amsterdam-London-New York-Tokyo, pp. 298–312.

    Google Scholar 

  14. Y. Yakabe and M. Kitano (1994) in Y. Doi and K. Fukuda (Eds.) Biodegradable Polymers and Plastics, Elsevier, Amsterdam-London-New York-Tokyo, pp. 331–336.

    Google Scholar 

  15. W. Mizuno, N. Kawaguchi, N. Sarukura, I Omodaka (1996) Kobunshi Ronbunshu 53, 513–521.

    Google Scholar 

  16. C. M. Buchanan, R. M. Gardner and R. J. Komarek (1993) J. Appl. Poly. Sci. 47, 1709–1719.

    Google Scholar 

  17. C. Bastioli, A. Cerutti, I. Guanella, G. C. Romano and M. Tosin (1994) in Proceeding of the SPI Symposium on the Third Annual Meeting Bio/Environmentally Degradable Polymer Society, June 6–8, 1994, Boston Massachusetts.

  18. H. S. Iman (1990) Appl. Environ. Microbiol. 56, 1317–1322.

    Google Scholar 

  19. A. Corti, G. Vallini, A. Pera, F. Cioni, R. Solaro and E. Chiellini (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.). Biodegradable Polymers and Plastics. Royal Society of Chemistry, Cambridge, pp. 245–248.

    Google Scholar 

  20. R. Burgess and A. E. Darby (1964) Brit. Plast. 37, 32–37.

    Google Scholar 

  21. R. Burgess and A. E. Darby (1965) Brit. Plast. 38, 165–169.

    Google Scholar 

  22. T. M. Wendt, A. M. Kaplan and M. Greenberger (1970) Int. Biodetn. Bull. 6, 139–143.

    Google Scholar 

  23. C. Guizard and P. Marty-Mahé (1996) Cahiers Agicultures 5, 43–51.

    Google Scholar 

  24. Kimura, K. Toyota, M. Iwatsuki and H. Sawada (1994) in Y. Doi and K. Fukuda (Eds.) Biodegradable Polymers and Plastics, Elsevier, Amsterdam-London-New York-Tokyo, pp. 92–108.

    Google Scholar 

  25. M. J. Diamond, B. Freedman and J. A. Garibaldi (1975) Int. Biodetn. Bull. 11, 127–132.

    Google Scholar 

  26. A. L. Lee, A. L. Pometto, A. Fratzke and and T. B. Bailey (1991) Appl. Environ. Microbiol. 57, 678–685.

    Google Scholar 

  27. Y. Doi, Y. Kanesawa and N. Tanahashi (1992) Polym. Degrad. Stab. 36, 173–177.

    Google Scholar 

  28. M. K. Cox (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.), Biodegradable Polymers and Plastics. Royal Society of Chemistry, Cambridge, pp. 95–100.

    Google Scholar 

  29. Y. Doi, Y. Kumagai, N. Tanahashi and K. Mukai (1992) in M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (Eds.). Biodegradable Polymers and Plastics. Royal Society of Chemistry, Cambridge, pp. 139–148.

    Google Scholar 

  30. Krupp and W. J. Jewell (1992) Environ. Sci. Technol. 26, 193–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmon, A., Guillaume, S., Bellon-Maurel, V. et al. Evaluation of Material Biodegradability in Real Conditions–Development of a Burial Test and an Analysis Methodology Based on Numerical Vision. Journal of Polymers and the Environment 7, 157–166 (1999). https://doi.org/10.1023/A:1022849706383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022849706383

Navigation