Skip to main content
Log in

Optical Properties of Noble Metal Clusters in Ultrathin Solid Films

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report on the optical properties (absorption, Raman response) of thin and ultrathin phthalocyanine and amorphous silicon films with incorporated noble metal clusters. The metal clusters cause the typical absorption features originating from their surface plasmon resonance. In ultrathin films, due to the spatially close interface, the plasmon absorption may be displaced from its resonance frequency in the bulk, and its average position may be controlled by the average thickness of the ultrathin optical film. For example, we observe a shift of the plasmon resonance of silver clusters in amorphous silicon films (on fused silica) from 440 nm to 740 nm, when the silicon thickness increases from “zero” up to 9 nm. The deposition experiments are accompanied by investigations of the film structure, particularly in order to estimate the silver cluster diameter, which is around 3 nm or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science 25 (Springer-Verlag, 1995).

  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, Vol. 111 (Springer-Verlag 1988).

  3. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1968).

  4. M. Quinten and U. Kreibig (1993). Appl. Opt. 32, 6173.

    Google Scholar 

  5. A. Wokaun, in H. Ehrenreich and D. Turnbull (eds.), Solid State Physics: Advances in Research and Applications, Vol. 38 (Academic Press, Orlando, Florida, 1984), p. 223 ff.

    Google Scholar 

  6. M. Cardona and G. Güntherodt (eds.), Light Scattering in Solids IV, Topics in Applied Physics, Vol. 54 (Springer-Verlag, 1984).

  7. Surface Studies by Nonlinear Laser Spectroscopies, Materials of the 129. WE — Heraeus, Seminar, May 30–June 1, Kassel, Germany (1994).

  8. M. Hiramoto, M. Suezak, and M. Yokoyama (1990). Chem. Lett. 327–330.

  9. S. Hayashi, K. Kozaru, and K. Yamamoto (1991). Solid State Commun. 79, 763.

    Google Scholar 

  10. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski (1995). Solar Energy Mat. Solar Cells 37, 337.

    Google Scholar 

  11. T. Götz, W. Hoheisel, M. Vollmer, and F. Träger (1995). Z. Phys. D 33, 133.

    Google Scholar 

  12. D. E. Aspnes and A. A. Studna (1983). Phys. Rev. B 27, 985.

    Google Scholar 

  13. O. Stenzel, A. Stendal, M. Roder, and C. von Borczyskowski (1997). Pure Appl. Opt. 6, 577.

    Google Scholar 

  14. O. Stenzel, A. Stendal, M. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn (1998). Nanotechnology 9.

  15. J. P. Benedict, R. Anderson, and S. J. Klepeis (1992). Mater. Res. Soc. Symp. Proc. 254, 121.

    Google Scholar 

  16. O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borozyskowski (1995). J. Phys. D 28, 2154.

    Google Scholar 

  17. O. Stenzel, A. Stendal, D. Drews, T. Werninghaus, M. Falke, and D. R. T. Zahn, and C. von Borczyskowski (1997). Appl. Surf. Sci. 108, 71.

    Google Scholar 

  18. J. H. Dobrowolski, F. C. Ho, and A. Waldorf (1983). Appl. Opt. 22, 3191.

    Google Scholar 

  19. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, and T. F. Thonn (1984). Appl. Opt. 23, and references therein.

  20. O. Stenzel and R. Petrich (1995). J. Phys. D 28, 978.

    Google Scholar 

  21. O. Stenzel, Das Dünnschichtspektrum: Ein Zugang von den Grundlagen zur Spezialliteratur (in German, Academie-Verlag, Berlin, 1996).

    Google Scholar 

  22. A. Thelen, Design of Interference Coatings (McGraw-Hill, New York, 1989).

    Google Scholar 

  23. A. Franke, Diploma thesis (in German), Technische Universität Chemnitz, Institute of Physics, Sept. (1996).

  24. M. Quinten, O. Stenzel, A. Stendal, and C. von Borczyskowski (1997). J. Opt. 28, 245.

    Google Scholar 

  25. C. Jennings, R. Aroca, A.-M. Hor, and R. O. Loutfy (1984). J. Raman Spectr. 15, 34.

    Google Scholar 

  26. V. Linß, Reports on Practical Studies (in German), Technische Universität (Chemnitz, Institute of Physics, July (1996).

  27. V. R. Blok (1982). J. Exp. Teoret. Fizik. 82, 678 (in Russian).

    Google Scholar 

  28. U. Kreibig, M. Gartz, and A. Hilger, Mie Resonances: Sensors for Physical and Chemical Cluster Interface Properties (Bunsenberichte fur Physikalische Chemie, 1997).

  29. E. J. Zeman, K. T. Carron, G. C. Schatz, and R. P. Van Duyne (1987). J. Chem. Phys. 87, 4189.

    Google Scholar 

  30. P. Dub (1983). Surf. Sci. 135, 307.

    Google Scholar 

  31. A. Bagchi, R. G. Barrera, and R. Fuchs (1982). Phys. Rev. B 25, 7086.

    Google Scholar 

  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

  33. R. Zallen, The Physics of Amorphous Solids (John Wiley & Sons, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenzel, O. Optical Properties of Noble Metal Clusters in Ultrathin Solid Films. Journal of Cluster Science 10, 169–193 (1999). https://doi.org/10.1023/A:1022664920382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022664920382

Navigation