Skip to main content
Log in

Spectral and Total Emissivity of High-Temperature Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A number of various high emissivity coatings has been investigated in detail. Oxide ceramic coatings for rotating x-ray anodes must have a total emissivity greater than 0.8 in order to ensure efficient cooling in vacuum. Only one of the investigated coatings showed sufficient long-term stability. For thermal protection of reusable space transportation systems during atmospheric reentry, in addition to high emissivity, oxidation resistance is required. SiC coatings and special polysilazane-based coatings have been tested. Results of emissivity measurements before and after flight experiments on the Russian FOTON capsule are also available. In order to improve the reliability of (high-temperature) emissivity measurements Pt–Rh alloys, SiC, Al2O3 doped with Cr2O3, and graphite have been tested to assess applicability as reference materials for comparative emissivity measurements by various facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. A. Hoxter and R. Hohn, Röntgenaufnahmetechnik (Siemens Aktiengesellschaft, München, 1982).

    Google Scholar 

  2. H. Hübner, Philips J. Res. 37:145 (1982).

    Google Scholar 

  3. J. C. Richmond, J. Res. NBS-C, Eng. Instrum. 67C:217 (1963).

    Google Scholar 

  4. R.C. Folweiler, Thermal Radiation Characteristics of Transparent, Semi-Transparent and Translucent Materials under Non-Isothermal Conditions, ASD-TDR-62-719 Ptl. (Wright-Patterson Air Force Base, OH, 1964).

    Google Scholar 

  5. D. C. G. Eaton, A. Pradler, and M. Lambert, ESA Bull. 61:50 (1991).

    Google Scholar 

  6. G. Neuer, Wärme und Stoffübertragung 4:133 (1971).

    Google Scholar 

  7. G. Neuer, Int. J. Thermophys. 16:257 (1995).

    Google Scholar 

  8. G. Neuer, P. Pohlmann, and E. Schreiber, Thermoelektrische Mikrosensoren, Reihe: Innovationen in der Mikrosystemtechnik, Band 26, (VDI/VDE Technologiezentrum Informationstechnik GmbH, Teltow, 1995), pp. 129–158.

    Google Scholar 

  9. E. Schreiber, G. Neuer, and B. Wörner, TEMPMEKO 90, Preprints of the 4th Symposium on Temperature and Thermal Measurement in Industry and Science (Finnish Society of Automatic Control, Helsinki, 1990), pp. 292–306.

    Google Scholar 

  10. W. Hohenauer and G. Neuer, Plansee Proceedings, Vol. 3, H. Bildstein and R. Eck, eds. (Plansee Metall AG, Reutte, 1993), pp. 373–385.

    Google Scholar 

  11. F. H. Arendts, A. Theurer, K. Maile, J. Kuhnle, G. Neuer, and R. Brandt, ZFW 19:189 (1995).

    Google Scholar 

  12. D. Heimann, Oxidationsschutzschichten für Kohlefaserverstärkte Verbundwerkstoffe durch Polymer Pyrolyse, Dissertation (Universität Stuttgart, Stuttgart, 1996).

    Google Scholar 

  13. A. Kienzle, Darstellung und Verarbeitung borhaltiger elementorganischer Vorstufen zur Herstellung keramischer Materialien in den Systemen SiCB und SiCBN, Dissertation (Universität Stuttgart, Stuttgart, 1994).

    Google Scholar 

  14. H. Hald and P. Winkelmann, 3rd European Workshop on Thermal Protection Systems, ESA-WPP-103 (ESA, Paris, 1995), pp. 117–122.

    Google Scholar 

  15. G. Neuer, R. Kochendorfer, and F. Gern, High Temp. High Press. 27/28:183 (1995/96).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuer, G., Jaroma-Weiland, G. Spectral and Total Emissivity of High-Temperature Materials. International Journal of Thermophysics 19, 917–929 (1998). https://doi.org/10.1023/A:1022607426413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022607426413

Navigation