Skip to main content
Log in

Nonequilibrium Molecular Dynamics Simulation of the Rheology of Linear and Branched Alkanes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Liquid alkanes in the molecular weight range of C20–C40 are the main constituents of lubricant basestocks, and their rheological properties are therefore of great concern in industrial lubricant applications. Using massively parallel supercomputers and an efficient parallel algorithm, we have carried out systematic studies of the rheological properties of a variety of model liquid alkanes ranging from linear to singly branched and multiply branched alkanes. We aim to elucidate the relationship between the molecular architecture and the viscous behavior. Nonequilibrium molecular dynamics simulations have been carried out for n-decane (C10H22), n-hexadecane (C16H34), n-tetracosane (C24H50), 10-n-hexylnonadecane (C25H52), and squalane (2, 6, 10, 15, 19, 23-hexamethyltetracosane, C30H62). At a high strain rate, the viscosity shows a power-law shear thinning behavior over several orders of magnitude in strain rate, with exponents ranging from −0.33 to −0.59. This power-law shear thinning is shown to be closely related to the ordering of the molecules. The molecular architecture is shown to have a significant influence on the power-law exponent. At a low strain rate, the viscosity behavior changes to a Newtonian plateau, whose accurate determination has been elusive in previous studies. The molecular order in this regime is essentially that of the equilibrium system, a signature of the linear response. The Newtonian plateau is verified by independent equilibrium molecular dynamics simulations using the Green–Kubo method. The reliable determination of the Newtonian viscosity from non-equilibrium molecular simulation permits us to calculate the viscosity index for squalane. The viscosity index is a widely used property to characterize the lubricant's temperature performance, and our studies represent the first approach towards its determination by molecular simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Evans and D. P. Moriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990), Chap. 6.

    Google Scholar 

  2. G. P. Morris, P. T. Daivis, and D. J. Evans, J. Chem. Phys. 94:7420 (1991).

    Article  Google Scholar 

  3. A. Berker, S. Chinoweth, U. C. Klomp, and Y. Michopoulos, J. Chem. Soc. Faraday Trans. 88:1719 (1992).

    Google Scholar 

  4. S. T. Cui, S. A. Gupta, P. T. Cummings, and H. D. Cochran, J. Chem. Phys. 105:1214 (1996).

    Article  Google Scholar 

  5. J. D. Moore, S. T. Cui, P. T. Cummings, and H. D. Cochran, AICHE J. 43:3260 (1997).

    Article  Google Scholar 

  6. J. I. Siepmann, S. Karaborni, and B. Smit, Nature 365:330 (1993).

    Article  Google Scholar 

  7. C. J. Mundy, J. I. Siepmann, and M. L. Klein, J. Chem. Phys. 102:3376 (1995).

    Article  Google Scholar 

  8. S. T. Cui, P. T. Cummings, and H. D. Cochran, J. Chem. Phys. 104:255 (1996).

    Article  Google Scholar 

  9. M. Mondello and G. S. Grest, J. Chem. Phys. 103:7156 (1995).

    Article  Google Scholar 

  10. M. J. Stevens, M. Mondello, G. S. Grest, S. T. Cui, H. D. Cochran, and P. T. Cummings, J. Chem. Phys. 106:7303 (1997).

    Article  Google Scholar 

  11. S. A. Gupta, P. T. Cummings, and H. D. Cochran, J. Chem. Phys. 107:10316 (1997); op. cit. 10327; op. cit. 10335.

    Article  Google Scholar 

  12. H. D. Cochran, P. T. Cummings, S. T. Cui, S. A. Gupta, R. K. Bhupathiraju, and P. F. LaCascio, Comp. Math. Appl. 35:73 (1998).

    Google Scholar 

  13. G. Maréchal and J. P. Ryckaert, Chem. Phys. Lett. 101:548 (1983).

    Article  Google Scholar 

  14. M. P. Allen, Mol. Phys. 52:705 (1984).

    Google Scholar 

  15. S. T. Cui, P. T. Cummings, and H. D. Cochran, Mol. Phys. 88:1653 (1996).

    Article  Google Scholar 

  16. R. Edberg, G. P. Morris, and D. J. Evans, J. Chem. Phys. 86:4555 (1987).

    Article  Google Scholar 

  17. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989).

    Google Scholar 

  18. M. Mondello and G. S. Grest, J. Chem. Phys. 106:9329 (1997).

    Article  Google Scholar 

  19. S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University Press, Cambridge, 1992); P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993).

    Google Scholar 

  20. J. C. Maxwell, Proc. R. Soc. London Ser. A 22:151 (1873).

    Google Scholar 

  21. E. W. Dean and G. H. B. Davis, Chem. Met. Eng. 36:618 (1929).

    Google Scholar 

  22. Hardimann and A. H. Nissan, J. Inst. Petrel. 31:255 (1945).

    Google Scholar 

  23. API, API 42, Properties of Hydrocarbons of High Molecular Weight (American Petroleum Institute, Research Project 42, Washington, D.C., 1966).

    Google Scholar 

  24. M. Gehrig and H. Lentz, J. Chem. Thermodyn. 15:1159 (1983).

    Article  Google Scholar 

  25. Personal communication with M. Mondello (1996).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, S.T., Cummings, P.T., Cochran, H.D. et al. Nonequilibrium Molecular Dynamics Simulation of the Rheology of Linear and Branched Alkanes. International Journal of Thermophysics 19, 449–459 (1998). https://doi.org/10.1023/A:1022565427881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022565427881

Navigation