Skip to main content
Log in

Lagrangian Estimations of Ozone Loss in the Core and Edge Region of the Arctic Polar Vortex 1995/1996: Model Results and Observations

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Ozone evolution and diabatic descent in the Arctic polar vortex in winter 1995/1996 was studied with a newly developed diabatic trajectory–chemistry model (DTCM). To study the chemical and dynamic evolution of the species in the polar vortex, 400 diabatic trajectories were calculated in the vortex core and edge region by using three-dimensional (3-D) wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The averaged diabatic descending motion and ozone behavior were obtained for particles started from the core and from the edge region of the vortex. The difference in ozone-loss rates as well as the difference in descending rates between the vortex core and the vortex-edge region was not statistically significant. The average cumulative ozone loss of 65 ± 16% in the vortex core obtained from the model calculations was consistent with the estimates obtained with a different method (Match experiment). The model results for the vortex core were compared with those obtained using trajectories with the vertical winds calculated on the basis of radiative cooling rates as used by the SLIMCAT 3-D chemical transport model. Although the trajectories based on cooling rates exhibited lower descending rates than those based on 3-D analyzed wind data, the ozone behavior was similar for both types of trajectory. Ozonesonde data from two stations (Ny-Alesund in the vortex core and Yakutsk in the vortex edge) were compared with the model results. For Lagrangian estimation of the ozone loss at these stations, the descending rates obtained by the diabatic trajectory calculations were used. Good agreements were obtained between the model results and observations for both the vortex core and edge region. These results suggest that strong ozone depletion occurred not only in the core, but also in the edge region of the vortex, and that air masses from the mid-latitudes did not appreciably affect the degree of ozone depletion in this winter–spring period. The sensitivity of the model to different descending rates and to the presence of large nitric acid trihydrate (NAT) particles was also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, G., Muller, R., McKenna, D. S., Rex, M., Carslaw, K. S., and Oelhaf, H., 2000: Ozone loss rates in the Arctic stratosphere in the winter 1994/1995: Model simulations underestimate results of the Match analysis, J. Geophys. Res. 105, 15175-15184.

    Google Scholar 

  • Bregman A., van den Broek, M., Carslaw, K. S., Muller, R., Peter, T., Scheele, M. P., and Lelieveld, J., 1997: Ozone depletion in the late winter lower Arctic stratosphere: observations and model results, J. Geophys. Res. 102, 10815-10828.

    Google Scholar 

  • Brown, S. S., Talukdar, R. K., and Ravishankara, A. R., 1999a: Reconsideration of the rate constants for the reaction of hydroxyl radicals with nitric acid vapor, J. Phys. Chem. 103, 3031-3037.

    Google Scholar 

  • Brown, S. S., Talukdar, R. K., and Ravishankara, A. R., 1999b: Rate constant for the Reaction OH + ??NO2 ??M ? ?HNO3 ??Munder atmospheric conditions, Chem. Phys. Lett. 299, 277-284.

    Google Scholar 

  • Carslaw, K., Luo, B., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3 -? H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett. 22, 1877-1880.

    Google Scholar 

  • Chipperfield, M. P., 1999: Multiannual simulations with a three-dimensional chemical transport model, J. Geophys. Res. 104, 1781-1805.

    Google Scholar 

  • DeMore W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation 12, NASA JPL Publ., 97–4.

  • Deniel C. and Bevilacqua, R. M., 1998: Arctic chemical ozone depletion during the 1994-1995 winter deduced from POAM II satellite observations and the REPROBUS three-dimensional model, J. Geophys. Res. 103, 19,231-19,244.

    Google Scholar 

  • Dhaniyala S., McKinney, K. A., and Wennberg, P. O., 2002: Lee-wave clouds and denitrification of the polar stratosphere, Geophys. Res. Lett., submitted.

  • Fahey, D. W., Gao, R. S., Carslaw, K. S., Kettleborough, J., Popp, P. J., Northway, M. J., Holecek, J. C., Ciciora, S. C., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Baumgardner, D. G., Gandrud, B., Wennberg, P. O., Dhaniyala, S., McKinney, K., Peter, T., Salawitch, R. J., Bui, T. P., Elkins, J. W., Webster, C. R., Atlas, E. L., Jost, H., Wilson, J. C., Herman, R. L., Kleinbohl, A., and von Konig, M., 2001: The detection of large HNO3-containing particles in the winter Arctic stratosphere, Science 291, 1026-1031.

    Google Scholar 

  • Fueglistaler S., Luo, B. P., Voigt, C., Carslaw, K. S., and Peter, T., 2002: NAT-rock formation by mother clouds: A microphysical model study, Atmos. Chem. Phys. Discuss. 2, 29-42.

    Google Scholar 

  • Gierczak, T., Burkholder, J. B., and Ravishankara, A. R., 1999: Temperature dependent rate coefficient for the reaction: O(3P)+ NO2 →NO + O2, J. Phys. Chem. 103, 877-883.

    Google Scholar 

  • Guirlet, M., Chipperfield, M. P., Pyle, J. A., Goutail, F., Pommereau, J. P., and Kyro, E., 2000: Modeled Arctic ozone depletion in winter 1997/1998 and comparison with previous winters, J. Geophys. Res. 105, 22185-22200.

    Google Scholar 

  • Hanson, D. R. and Mauersberger, K., 1988: Vapour-pressures of HNO3H2O solutions at low temperatures, J. Phys. Chem. 92, 6167-6170.

    Google Scholar 

  • Hertel, O., Berkowicz, R., Christensen, J., and Hov, O., 1993: Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmos. Environ. 27A(16), 2591-2611.

    Google Scholar 

  • Hicke, J. and Tuck, A., 1999: Tropospheric clouds and lower stratospheric heating rates: Results from late winter in the southern hemisphere. J. Geophys. Res. 104, 9309-9324.

    Google Scholar 

  • Hicke, J. and Tuck, A., 2001: Polar stratospheric cloud impacts on Antarctic stratospheric heating rates, Quart. J. Roy. Meteorol. Soc. 127, 1645-1658.

    Google Scholar 

  • Kilbane-Dawe I., Harris, N. R. P., Pyle, J. A., Rex, M., Lee, A. M., and Chipperfield, M. P., 2001: A comparison of Match ozonesonde-derived and 3D model ozone loss rates in the Arctic polar vortex during the winters of 1994/95 and 1995/96, J. Atmos. Chem. 39, 123-138.

    Google Scholar 

  • Knudsen, B. M., Larsen, N., Mikkelsen, I. S., Morcrette, J. J., Braathen, G. O., Kyro, E., Fast, H., Gernandt, H., Kanzawa, H., Nakane, H., Dorokhov, V., Yushkov, V., Hansen, G., Gil, M., and Shearman, R. J., 1998: Ozone depletion in and below the Arctic vortex for 1997, Geophys. Res. Lett. 25, 627-630.

    Google Scholar 

  • Lee, A. M., Roscoe, H. K., Jones, A. E., Haynes, P. H., Shuckburgh, E. F., Morrey, M. W., and Pumphrey, H. C., 2001: The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring, J. Geophys. Res. 106, 3203-3211.

    Google Scholar 

  • Lefevre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P., 1994: Chemistry of the 1991-1992 stratospheric winter: Three-dimensional model simulations, J. Geophys. Res. 99, 8183-8195.

    Google Scholar 

  • Lefevre, F., Figarol, F., Carslaw, K. S., and Peter, T., 1998: The 1997 Arctic ozone depletion quantified from three-dimensional model simulations, Geophys. Res. Lett. 25, 2425-2428.

    Google Scholar 

  • Lucic, D., Harris, N. R., Pyle, J. A., and Jones, R. L., 1999: A technique for estimating polar ozone loss: Results for the northern 1991/92 winter using EASOE data, J. Atmos. Chem. 34, 365-383.

    Google Scholar 

  • Murray, F. W., 1967: On the computation of saturation vapour pressure, J. Appl. Meteorol. 6, 203-204.

    Google Scholar 

  • Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R., 1996: An objective determination of the polar vortex using Ertel’s potential vorticity, J. Geophys. Res. 101, 9471-9478.

    Google Scholar 

  • Rex, M., Harris, N. R., von der Gathen, P., Lehmann, R., Braathen, G. O., Reimer, E., Beck, A., Chipperfield, M., Alfier, R., Allaart, M., O'Connor, F., Dier, H., Dorokhov, V., Fast, H., Gil, M., Kyro, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M., Nakane, H., Notholt, J., Rummukainen, M., Viatte, P., and Wenger, J., 1997: Prolonged stratospheric ozone loss in the 1995-96 Arctic winter, Nature 389, 835-838.

    Google Scholar 

  • Schoeberl, M. R., Lait, L. R., Newman, P. A., and Rosenfield, J. E., 1992: The structure of the polar vortex, J. Geophys. Res. 97, 7859-7882.

    Google Scholar 

  • Schulz, A., Rex, M., Steger, J., Harris, N. R., Braathen, G. O., Reimer, E., Alfier, R., Beck, A., Alpers, M., Cisneros, J., Claude, H., Backer, H. D., Dier, H., Dorokhov, V., Fast, H., Godin, S., Hansen, G., Kanzawa, H., Kois, B., Kondo, Y., Kosmidis, E., Kyro, E., Litynska, Z., Molyneux, M., Murphy, G., Nakane, H., Parrondo, C., Ravegnani, F., Varotsos, C., Vialle, C., Viatte, P., Yushkov, V., Zerefos, C., and von der Gathen, P., 2000: Match observations in the Arctic winter 1996/97: High stratospheric ozone loss rates correlate with low temperatures deep inside the polar vortex, Geophys. Res. Lett. 27, 205-208.

    Google Scholar 

  • Sutton, R. T., MacLean, H., Swinbank, R., O’Neill, A., and Taylor, F. W., 1994: High-resolution stratospheric tracer fields estimated from satellite observations using Lagrangian trajectory calculations, J. Atmos. Sci. 51, 2995-3005.

    Google Scholar 

  • Tabazadeh, A., Santee, M. L., Danilin, M. Y., Pumphrey, H. C., Newman, P. A., Hamill, P. J., and Mergenthaler, J. L., 2000: Quantifying denitrification and its effect on ozone recovery, Science 288, 1407-1411.

    Google Scholar 

  • Verwer, J. G., Blom, J. G., Van Loon, M., and Spee, E. J., 1996: A comparison of stiff ODE solvers for atmospheric chemistry problems, Atmos. Environ. 1, 49-58.

    Google Scholar 

  • Waibel, A. E., Peter, T., Carslaw, K. S., Oelhaf, H., Wetzel, G., Crutzen, P. J., Poschl, U., Tsias, A., Reimer, E., and Fisher, H., 1999: Arctic ozone loss due to denitrification, Science 283, 2064-2069.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nakane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukyanov, A.N., Nakane, H. & Yushkov, V.A. Lagrangian Estimations of Ozone Loss in the Core and Edge Region of the Arctic Polar Vortex 1995/1996: Model Results and Observations. Journal of Atmospheric Chemistry 44, 191–210 (2003). https://doi.org/10.1023/A:1022497308731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022497308731

Navigation