Skip to main content
Log in

Vasopressin and Bradykinin Regulate Secretory Processing of the Amyloid Protein Precursor of Alzheimer's Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The amyloid protein precursor (APP) can be processed via several alternative processing pathways, α-secretase processing by cleavage within the amyloid β-peptide domain of APP is highly regulated by several external and internal signals including G protein-coupled receptors, protein kinase C and phospholipase A2. In order to demonstrate that G protein-coupled neuropeptide receptors for bradykinin and vasopressin can increase α-secretase processing of APP, we stimulated endogenously expressed bradykinin or vasopressin receptors in cell culture with the neuropeptides and measured the secreted ectodomain (APPs) in the conditioned media. Both bradykinin and vasopressin rapidly increased phosphatidylinositol (PI) turnover in PC-12 and in NRK-49F cells, indicating that these cell lines constitutively expressed functional PI-linked receptors for these neuropeptides. Both bradykinin and vasopressin readily stimulated APPs secretion. Increased APPs secretion was concentration-dependent and saturable, and it was blocked by receptor antagonists indicating specific receptor interaction of the peptides. The bradykinin-induced increase in APPs secretion in PC-12 cells was mediated by protein kinase C (PKC), whereas vasopressin receptors in NRK-49F cells were coupled to APP processing by PKC-independent signalling pathways. Our data show that neuropeptides can modulate APP processing in cell culture. In as much as increased α-secretase processing is associated with decreased formation of Aβ1–40, a major constituent of amyloid plaques, our findings suggest a possible role for modulating neuropeptide receptors as a strategy for altering amyloid metabolism in Alzheimer's disease brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Borkowski, J. A., Ransom, R. W., Seabrook, G. R., Trumbauer, M., Chen, H., Hill, R. G., Strader, C. D., and Hess, J. F. 1995. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J. Biol. Chem. 270:13706–13710.

    Google Scholar 

  2. Jones, S., Brown, D. A., Milligan, G., Willer, E. Buckley, N. J. and Caulfield, M. P. 1995. Bradykinin excited rat sympathetic neurons by inhibition of M current through a mechanism involving B2 receptors and G alpha q/11. Neuron 14:399–405.

    Google Scholar 

  3. Weinreich, D., Koschorke, G. M., Undem, B. J., and Taylor, G. E. 1995. Prevention of the excitatory actions of bradykinin by inhibition of PG12 formation in nodose neurones of the guinea pig. J. Physiol. 483:735–746.

    Google Scholar 

  4. Cholewinski, A. J., Stevens, G., McDermott, A. M., and Wilkin, G. P. 1991. Identification of B2 bradykinin binding sites on cultured cortical astrocytes. J. Neurochem. 57:1456–1458.

    Google Scholar 

  5. Issandou, M. and Dorbon, J.-M. 1991. Des-Arg9 bradykinin modulates DNA synthesis, phospholipase C, and protein kinase C in cultured mesangial cells. J. Biol. Chem. 266:21037–21043.

    Google Scholar 

  6. Suh, B. C., Lee, C. O., and Kim, K. T. 1995. Signal flows from two phospholipase C-linked receptors are independent in PC-12 cells. J. Neurochem. 64:1071–1079.

    Google Scholar 

  7. Lee, K.-M., Toscas, K., and Villerereal, M. L. 1993. Inhibition of bradykinin-and thapsigargin-induced Ca2+ entry by tyrosine kinase inhibitors. J. Biol. Chem. 268:9945–9948.

    Google Scholar 

  8. McEachern, A. E., Shelton, E. R., Bhakta, S., Obemolte, R., Bach, C., Zuppan, P., Fujisaki, J., Aldrich, R. W., and Jarnagin, K. 1991. Expression cloning of a rat B2 bradykinin receptor. Proc. Natl. Acad. Sci. USA 88:7724–7728.

    Google Scholar 

  9. Menke, J. G., Borkowski, J. A., Bierilo, K. K., MacNeil, T., Derrick, A. W., Schneck, K. A., Ransom, R. W., Strader, C. D., Linemeyer, D. L., and Hess, J. F. 1994. Expression cloning of a human B1 bradykinin receptor. J. Biol. Chem. 269:21583–21586.

    Google Scholar 

  10. Nardone, J., Gerald, C., Rimawi, L., Song, L., and Hogan, P. G. 1994. Identification of a B2 bradykinin receptor expressed by PC12 pheochromocytoma cells. Proc. Natl. Acad. Sci. USA 91:4412–4416.

    Google Scholar 

  11. Morel, A., O'Carroll, A.-M., Brownstein, M. J., and Lolait, S. J. 1992. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 356:356–526.

    Google Scholar 

  12. Briley, E. M., Lolait, S. J., Axelrod, J., and Felder, C. C. 1994. The cloned vasopressin V1a receptor stimulates phospholipase A2, phospholipase C, and phospholipase D through activation of receptor-operated calcium channels. Neuropeptides 27:63–74.

    Google Scholar 

  13. Lolait, S. J., O'Carroll, A. M., Mahan, L. C., Felder, C. C., Button, D. C., Young, W. S. 3rd., Mezey, E., and Brownstein, W. J. 1995. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA 92:6783–6787.

    Google Scholar 

  14. Ostrowski, N. L., Lolait, S. J., and Young, W. S. 3rd 1994. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain. Endocrinology 135:1511–1528.

    Google Scholar 

  15. Lolait, S. J., O'Carroll, A.-M., McBride, O. W., Konig, M., Morel, A., and Brownstein, M. J. 1992. Cloning and characterization of a vasopressin V2 receptor; chromosomal localization of gene suggests link to hereditary nephrogenic diabetes insipidus. Nature 357:336–339.

    Google Scholar 

  16. Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. 1990. Evidence that β-amyloid protein of Alzheimer's disease is not derived by normal processing. Science 248:492–495.

    Google Scholar 

  17. Hung, A. Y., Haass, C., Nitsch, R. M., Qiao Qiu, W., Citron, M., Wurtman, R. J., Growdon, J. H., and Selkoe, D. J. 1993. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J. Biol. Chem. 268:22959–22962.

    Google Scholar 

  18. Gabuzda, D., Busciglio, J., and Yankner, B. A. 1993. Inhibition of β-amyloid production by activation of protein kinase C. J. Neurochem. 61:2326–2329.

    Google Scholar 

  19. Wolf, B. A., Wertkin, A. M., Jolly, Y. C., Yasuda, R. P., Wolfe, B. B., Konrad, R. J., Manning, D., Ravi, S., Williamson, J. R., and Lee, V. M. Y. 1995. Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J. Biol. Chem. 270:4916–4922.

    Google Scholar 

  20. Farber, S. A., Nitsch, R. M., Schulz, J. G., and Wurtman, R. J. 1995. Regulated secretion of β-amyloid precursor protein in rat brain. J. Neurosci. 15:7442–7450.

    Google Scholar 

  21. Nitsch, R. M. and Growdon, J. H. 1994. Role of neurotransmission in the regulation of amyloid β-protein precursor processing. Biochem. Pharmacol. 47:1275–1284.

    Google Scholar 

  22. Nitsch, R. M., Slack, B. E., Wurtman, R. J., and Growdon, J. H. 1992. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307.

    Google Scholar 

  23. Nitsch, R. M., Deng, M., Growdon, J. H., and Wurtman, R. J. 1996. Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J. Biol. Chem. 271:4188–4194.

    Google Scholar 

  24. Nitsch, R. M., Deng, A., Wurtman, R. J., and Growdon, J. H. 1997. Metabotropic glutamate receptor subtype mGluR1α stimulates the secretion of the amyloid beta protein precursor ectodomain. J. Neurochem. in press.

  25. Nitsch, R. M., Farber, S. A., Growdon, J. H., and Wurtman, R. J. 1993. Release of amyloid β-protein precursor derivatives from hippocampal slices by electrical depolarization. Proc. Natl. Acad. Sci. USA 90:5191–5193.

    Google Scholar 

  26. Lee, R. K. K., Wurtman, R. J., Slack, B. E., Cox, A. J., and Nitsch, R. M. 1995. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 92:8083–8087.

    Google Scholar 

  27. Emmerling, M. R., Moore, C. J., Doyle, P. D., Carroll, R. T., and Davis, R. E. 1993. Phospholipase A2 activation influences the processing and secretion of the amyloid precursor protein. Biochem. Biophys. Res. Commun. 197:292–297.

    Google Scholar 

  28. Slack, B. E., Breu, J., Petryniak, M. A., Srivastava, K., and Wurtman, R. J. 1995. Tyrosine phosphorylation-dependent stimulation of amyloid precursor protein secretion by the m3 muscarinic aceltylcholine receptor. J. Biol. Chem. 270:8337–8344.

    Google Scholar 

  29. Slunt, H. H., Thinakaran, G., Von Koch, C., Lo, A. C. Y., Tanzi, R. E., and Sisodia, S. S. 1994. Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J. Biol. Chem. 269:2637–2644.

    Google Scholar 

  30. Xu, H., Greengard, P., and Gandy, S. 1995. Regulated formation of Golgi secretory vesicles containing Alzheimer beta-amyloid precursor protein. J. Biol. Chem. 270:23243–23245.

    Google Scholar 

  31. Milward, E. A., Papadopoulos, R., Fuller, S. J., Moir, R. D., Small, D., Beyreuther, K., and Masters, C. L. 1992. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9:129–137.

    Google Scholar 

  32. Zheng, H., Jiang, M. H., Trumbauer, M. E., Sirinathsinghji, D. J. S., Hopkins, R., Smith, D. W., Heavens, R. P., Dawson, G. R., Boyce, S., Conner, M. W., Stevens, K. A., Slunt, H. H., Sisodia, S. S., Chen, H. Y., and Van der Ploeg, L. H. T. 1995. Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531.

    Google Scholar 

  33. Goate, A. Chartier-Harlin, M.-C. Mullan, M. Broen, J. Crawford, F. Fidani, L. Giuffra, L. Hayes, A. Irving, N. James, L. Mant, R. Newton, P. Rooke, K. Roques, P. Talbot, C. Pericak-Vance, M. Roses, A. Williamson, R. Rossor, M. Owen, M., and Hardy, J. 1991. Segregation of a missense mutation in the amyloid precursor gene with familial Alzheimer's disease. Nature 349:704–706.

    Google Scholar 

  34. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanan, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Selkoe, D., and Younkin, S. 1996. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2:850–852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitsch, R.M., Kim, C. & Growdon, J.H. Vasopressin and Bradykinin Regulate Secretory Processing of the Amyloid Protein Precursor of Alzheimer's Disease. Neurochem Res 23, 807–814 (1998). https://doi.org/10.1023/A:1022423813362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022423813362

Navigation