Skip to main content
Log in

Mediators of Microvascular Injury in Dermal Burn Wounds

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In previous studies we have demonstrated that second-degree thermal injury of skin in rats leads to secondary effects, such as systemic complement activation, C5a-mediated activation of blood neutrophils, their adhesion-molecule-guided accumulation in lung capillaries and the development of acute pulmonary injury, largely caused by neutrophil-derived toxic oxygen metabolites. In the dermal burn wound, however, pathophysiologic events are less well understood. The injury is fully developed at four hours post-burn. To further elucidate the pathogenesis of the “late phase” dermal vascular damage, rats were depleted of neutrophils or complement by pretreatment with rabbit antibody against rat neutrophils or with cobra venom factor, respectively. In other experiments, rats were treated with blocking antibodies to IL-6, IL-1, and TNFα immediately following thermal burning or were pretreated with hydroxyl radical scavengers (dimethyl sulfoxide, dimethyl thiourea). Extravasation of 125I-labeled bovine serum albumin into the burned skin was studied, as well as, skin myeloperoxidase levels. The studies revealed that, like in secondary lung injury, neutrophils and toxic oxygen metabolites, are required for full development of microvascular injury. In contrast, however, development of dermal vascular damage in thermally injured rats was not affected by complement depletion. Our data suggest that the development of microvascular injury in the dermal burn wound is complement-independent, involves the pro-inflammatory cytokines IL-1, TNFα and IL-6, and may result from reactive oxygen metabolites generated by neutrophils accumulating in the burn wound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mann, R. and D. Heimbach. 1996. Prognosis and treatment of burns. West. J. Med. 165:215–220.

    PubMed  Google Scholar 

  2. Till, G. O., C. Beauchamp, D. Menpace, W. Tourtellotte Jr., R. Kunkel, K. J. Johnson, and P. A. Ward. 1983. Oxygen radical dependent lung damage following thermal injury of rat skin. J. Trauma. 23:269–273.

    PubMed  Google Scholar 

  3. Mulligan, M. S., G. O. Till, C. W. Smith, D. C. Anderson, M. Miyasaka, T. Tamatani, R. F. Todd, III, T. B. Issekutz, and P. A. Ward. 1994. Role of leukocyte adhesion molecules in lung and dermal vascular injury after thermal trauma of skin. Am. J. Pathol. 144:1008–1015.

    PubMed  Google Scholar 

  4. Demling, R. H. 1985. Burns. N. Engl. J. Med. 313: 1389–1398.

    PubMed  Google Scholar 

  5. Freidl, H. P., G. O. Till, O. Trentz, and P. A. Ward. 1989. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am. J. Pathol. 135:203–217.

    PubMed  Google Scholar 

  6. Till, G. O., L. S. Guilds, M. Mahrougui, H. P. Freidl, O. Trentz, and P. A. Ward. 1989. Role of xanthine oxidase in thermal injury of skin. Am. J. Pathol. 135:195–202.

    PubMed  Google Scholar 

  7. Till, G. O., J. R. Hatherill, W. W. Tourtellotte, M. J. Lutz, and P. A. Ward. 1985. Lipid peroxidation and acute lung injury after thermal trauma to skin: Evidence of a role for hydroxyl radical. Am. J. Pathol. 135:195–202.

    Google Scholar 

  8. Ballow, M. and C. G. Cochrane. 1969. Two anti-complementary factors in cobra venom. Hemolysis of guinea pig erythrocytes by one of them. J. Immunol. 103:944–952.

    PubMed  Google Scholar 

  9. Mulligan, M. S., E. Schmid, B. Beck-Schimmer, G. O. Till, H. P. Friedl, R. B. Brauer, T. E. Hugli, M. Miyasaka, R. L. Warner, K. J. Johnson, and P. A. Ward. 1996. Requirement and role of C5a in Acute Lung Inflammatory Injury in Rats. J. Clin. Invest. 98:503–512.

    PubMed  Google Scholar 

  10. Prober, J. S. and R. S. Cotran. 1990. The role of endothelial cells in inflammation. Transplantation. 50:537–544.

    PubMed  Google Scholar 

  11. Bevilacqua, M. P., J. S. Prober, D. L. Mendrick, R. S. Cotran, and M. A. Gimbrone, JR. 1987. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. U.S.A. 84:9238–9242.

    PubMed  Google Scholar 

  12. Bevilacqua, M. P., S. Stengelin, M. A. Gimbrone, and B. Seed. 1989. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160–1165.

    PubMed  Google Scholar 

  13. Osborn, L., C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb. 1989. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 60:577–584.

    Google Scholar 

  14. Dustin, M. A. and T. A. Springer. 1988. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultures endothelial cells. J. Cell Biol. 107:321–331.

    Article  PubMed  Google Scholar 

  15. Content, J., L. De Wit, P. Poupart, G. Opdenakker, J. Van Damme, and A. Billiau. 1985. Induction of a 26-kDa-protein mRNA in human cells treated with and interleukin-1-related, leukocyte-derived factor. Eur. J. Biochem. 152:253–257.

    PubMed  Google Scholar 

  16. Kasid, A., E. P. Director, and S. A. Rosenberg. 1989. Regulation of interleukin-6 (IL-6) by IL-2 and TNF-α in human peripheral blood mononuclear cells. Ann. N.Y. Acad. Sci. 557:564–566.

    Google Scholar 

  17. Maruo, N., I. Morita, M. Shirao, and S. Murota. 1992. IL-6 increases endothelial permeability in vitro. Endocrinology 131:710–714.

    Article  PubMed  Google Scholar 

  18. Biffl, W. L., E. E. Moore, F. A. Moore, V. S. Carl, F. J. Kim, and R. J. Franciose. 1994. Interleukin-6 potentiates neutrophil priming with platelet-activating factor. Arch. Surg. 129:1131–1136.

    PubMed  Google Scholar 

  19. Biffl, W. L., E. E. Moore, F. A. Moore, and C. C. Barnett. 1996. Interleukin-6 delays neutrophil apoptosis via a mechanism involving platelet-activating factor. J. Trauma 40:575–579.

    PubMed  Google Scholar 

  20. Mullen, P. G., A. C. J. Windsor, C. J. Walsh, A. A. Fowler, III, and H. J. Sugarman. 1995. Tumor necrosis factor-α and IL-6 selectively regulate neutrophil function in vitro. J. Surg. Res. 58:124–130.

    Article  PubMed  Google Scholar 

  21. Youker, K., C. W. Smith, D. C. Anderson, D. Miller, L. H. Michael, R. D. Rossen, and M. L. Entman. 1992. Neutrophil adherence to isolated adult cardiac myocytes: Induction by cardiac lymph collected during ischemia and reperfusion. J. Clin. Invest. 89:602–609.

    PubMed  Google Scholar 

  22. Yasojima, K., K. S. Kilgore, R. A. Washington, B. R. Lucchesi, and P. L. McGeer. 1998. Complement gene expression by rabbit heart: Upregulation by ischemia and reperfusion. Circ. Res. 82:1224–1230.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravage, Z.B., Gomez, H.F., Czermak, B.J. et al. Mediators of Microvascular Injury in Dermal Burn Wounds. Inflammation 22, 619–629 (1998). https://doi.org/10.1023/A:1022366514847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022366514847

Keywords

Navigation