Skip to main content
Log in

Thermal analysis of environmentally compatible polymers containing plant components in the main chain

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Environmentally compatible polymers such as poly(ε-caprolactone) (PCL) and polyurethane (PU) derivatives from PCL's were synthesized from saccharides, polysaccharides and lignins such as glucose, fructose, sucrose, cellulose, cellulose acetate, alcoholysis lignin, kraft lignin and sodium lignosulfonate. Flexible and rigid PU sheets and foams were also prepared by the reaction of OH groups of saccharides and lignins with isocyanates such as toluene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI). Glass transition temperatures (Tg's), cold-crystallization temperatures (Tcc's) and melting temperatures (Tm's) of saccharide- and lignin-based PCL's and PU's were determined by differential scanning calorimetry (DSC), and phase diagrams were obtained. Methods of controlling mechanical properties such as stress and elasticity of PU's through changing thermal properties such as glass transition temperature were established. Thermogravimetry (TG) and TG-Fourier transform infrared spectrometry (FTIR) were also carried out in order to analyze the degradation temperature and evolved gases from the above obtained polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hatakeyama, E. Hayashi and T. Haraguchi, Polym., 18 (1977) 759.

    Article  CAS  Google Scholar 

  2. T. Hatakeyama, K. Nakamura and H. Hatakeyama, Polym., 19 (1978) 593.

    Article  CAS  Google Scholar 

  3. K. Nakamura, T. Hatakeyama and H. Hatakeyama, Polym. J., 15 (1983) 361.

    Article  CAS  Google Scholar 

  4. S. Hirose, H. Hatakeyama and T. Hatakeyama, Sen-i Gakkaishi, 39 (1983) 496.

    Google Scholar 

  5. V. P. Saraf and W. G. Glasser, J. Appl. Polym. Sci., 29 (1984) 1831.

    Article  CAS  Google Scholar 

  6. V. P. Saraf and W. G. Glasser, J. Appl. Polym. Sci., 30 (1985) 2207.

    Article  CAS  Google Scholar 

  7. K. Nakamura, T. Hatakeyama and H. Hatakeyama, Polym. J., 18 (1986) 219.

    Article  CAS  Google Scholar 

  8. H. Yoshida, R. Morck, K. P. Kringstad and H. Hatakeyama J. Appl. Polym. Sci., 34 (1987) 1187.

    Article  CAS  Google Scholar 

  9. S. Hirose, S. Yano, T. Hatakeyama and H. Hatakeyama, ACS Symposium Ser. 397, ACS, Washington DC, 1989, p. 382.

    Google Scholar 

  10. H. Hatakeyama, S. Hirose and T. Hatakeyama, ACS Symposium Ser. 397, ACS, Washington DC, 1989, p. 205.

    Google Scholar 

  11. T. Hatakeyama, K. Nakamura, S. Yoshida and H. Hatakeyama, Food Hydrocolloids, 3 (1989) 301.

    Article  CAS  Google Scholar 

  12. S. Hirose, K. Nakamura and T. Hatakeyama, Cellulose and Wood (Ed. C. Schuerch) John Wiley and Sons, N. Y., 1989, p. 1133.

    Google Scholar 

  13. R. Morck, A. Reimann, K. Kringstad and H. Hatakeyama, Wood Processing and Utilization, 21 (1989) 175.

    Google Scholar 

  14. H. Yoshida, R. Morck, K. P. Kringstad and H. Hatakeyama, J. Appl. Polym. Sci., 40 (1990) 1819.

    Article  CAS  Google Scholar 

  15. K. Nakamura, T. Hatakeyama and H. Hatakeyama, Polym. J., 23 (1991) 253.

    Article  CAS  Google Scholar 

  16. R. Morck, A. Reimann, K. P. Kringstad and H. Hatakeyama, Polym. Adv. Technol., 2 (1991) 41.

    Article  Google Scholar 

  17. T. Hatakeyama and H. Hatakeyama, Viscoelasticity of Biomaterials (Eds W. G. Glasser and H. Hatakeyama), ACS Symp. Ser. 489, ACS, Washington DC 1992, p. 218.

    Google Scholar 

  18. S. Hirose and H. Hatakeyama, Polyphenols Actualities, 8 (1992) 13.

    Google Scholar 

  19. H. Hatakeyama and T. Hatakeyama, Thermochim. Acta, 308 (1998) 3.

    Article  CAS  Google Scholar 

  20. R. Tanaka, T. Hatakeyama and H. Hatakeyama, Polym. Inter., 45 (1998) 118.

    Article  CAS  Google Scholar 

  21. H. Hatakeyama, S. Hirose, K. Nakamura and T. Hatakeyama, Cellulosics: Chemical, Biochemical and Material Aspects, (Eds J. F. Kennedy, G. O. Phillips and P. A. Williams), Ellis Horwood, Chichester 1993, p. 524.

    Google Scholar 

  22. N. Morohoshi, S. Hirose, H. Hatakeyama, T. Tokashiki and K. Teruya, Sen-i Gakkaishi, 51 (1995) 143.

    CAS  Google Scholar 

  23. H. Hatakeyama, S. Hirose, T. Hatakeyama, K. Nakamura, K. Kobashigawa and N. Morohoshi, J. Macromol. Sci., Pure Appl. Chem., A32 (1995) 743.

    CAS  Google Scholar 

  24. M. J. Donnely, Polym. Inter., 37 (1995) 297.

    Article  Google Scholar 

  25. K. Nakamura, Y. Nishimura, P. Zetterlund, T. Hatakeyama and H. Hatakeyama, Thermochim. Acta, 282/283 (1996) 433.

    Article  CAS  Google Scholar 

  26. P. Zetterlund, S. Hirose, T. Hatakeyama, H. Hatakeyama and A-C. Albertsson, Polym. Inter., 42 (1997) 1.

    Article  CAS  Google Scholar 

  27. H. Hatakeyama, K. Kobashigawa, S. Hirose and T. Hatakeyama, Macromol. Symp., 130 (1998) 127.

    CAS  Google Scholar 

  28. T. Hatakeyama, T. Tokashiki and H. Hatakeyama, Macromol. Symp., 130 (1998) 139.

    CAS  Google Scholar 

  29. A. Gandini and N. M. Belgacem, Polym. Inter., 47 (1998) 267.

    Article  CAS  Google Scholar 

  30. M. Funaoka, Polym. Inter., 47 (1998) 277.

    Article  CAS  Google Scholar 

  31. T. Hatakeyama and F. X. Quinn, Thermal Analysis, Fundamentals and Applications to Polymer Science, Wiley, Chichester 1994.

    Google Scholar 

  32. K. Kamide and M. Sato, Polym. J., 17 (1985) 919.

    Article  CAS  Google Scholar 

  33. C. G. Pitt, Biodegradable Polymers and Drug Delivery Systems, (Eds M. Chasin and R. Langer), Marcel Dekker Inc. New York 1990, p. 81.

    Google Scholar 

  34. E. J. Coles and R. Simon, (Ed. A. Blumstein), Polymeric Liquid Crystals, Plenum, New York 1983, p. 351.

    Google Scholar 

  35. T. Hatakeyama and Z. Liu, Handbook of Thermal Analysis, Wiley, Chichester 1998, p. 206.

    Google Scholar 

  36. H. Hatakeyama, T. Yoshida and T. Hatakeyama, J. Therm. Anal. Cal., 59 (2000) 157.

    Article  CAS  Google Scholar 

  37. S. Nakamura, M. Todoki, K. Nakamura and H. Kanetsuna, Thermochim. Acta, 163 (1988) 136.

    Google Scholar 

  38. S. Hirose and H. Hatakeyama, Mokuzai Gakkaishi, 32 (1986) 621.

    CAS  Google Scholar 

  39. K. Nakamura, T. Hatakeyama and H. Hatakeyama, Polym. Adv. Technol., 3 (1992) 151.

    Article  CAS  Google Scholar 

  40. J. H. Saunders and K. Fisch, in: Polyurethanes, Chemistry and Technology in High Polymers, Vol. XV, Interscience Publishers, New York 1962, p. 103.

    Google Scholar 

  41. K. V. Sarkanen and L. H. Ludwig Eds, Lignins, Wiley-Interscience, New York, 1971.

    Google Scholar 

  42. H. Hatakeyama, Y. Izuta, T. Yoshida, S. Hirose and T. Hatakeyama, Recent Advances in Environmentally Compatible Polymers (Eds J. F. Kennedy, G. O. Phillips, P. A. Williams and H. Hatakeyama), Woodhead Publishing, Cambridge 2001., p. 33.

    Google Scholar 

  43. M. L. Matsuzak and K. C. Frisch, J. Polym. Sci., Polym. Chem. Ed., 11 (1973) 637.

    Article  Google Scholar 

  44. G. E. Domberg, G. A. Rossinskaya and A. I. Kalninsh, J. Thermal Anal., 2 (1972) 327.

    Google Scholar 

  45. G. E. Domberg, G. A. Rossinskaya and V. N. Sergreeva, J. Thermal Anal., 3 (1974) 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatakeyama, H. Thermal analysis of environmentally compatible polymers containing plant components in the main chain. Journal of Thermal Analysis and Calorimetry 70, 755–795 (2002). https://doi.org/10.1023/A:1022248001960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022248001960

Navigation