Skip to main content
Log in

Nerve growth factor β(NGF β) delivery via a collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In craniofacial surgery, bone is needed to augment misshapen areas and to fill gaps during repair of congenital anomalies and injuries resulting into bone deficiencies. Examples of conditions requiring bone tissue include missing alveolar bone in cleft palates, bony nasal pyramid defects following removal of fistulous tracts or cysts and defects following removal of sinus and mandibular tumors. Moreover, maxillofacial neurosensory deficiencies may be caused by various surgical procedures, such as tooth extraction, osteotomies, pre-prosthetic procedures, excision of tumors or cysts, surgery of TMJ, and surgical treatment of fractures and cleft lip/palate. Therefore, a tissue engineering approach to craniofacial surgery has a crucial importance: the use of various composites with osteoconductive ceramics, polymers, bioactive factors, cells, or a combination of them, offers the possibility of rapid tissue regeneration and integration with the host tissue. In this study, a composite consisting of two well-known biomaterials, collagen/hydroxyapatite (Col/HAp), was used as a drug delivery device for neurotrophin – nerve growth factor β (NGF β). This delivery device, enriched with neurogenic-osteogenic factor, was analyzed in vitro and in vivo. It was implanted into calvaria defects of 20 Wistar rats, weighing 200–250 g. Implants were left in place for different periods of time. Controls were as follows: (a) contralateral defect without any implant; and (b) contralateral defect implanted with composite without NGF factor. The rats were euthanized after 30 days, and the implant sites and explants were examined clinically, histologically, SEM and histomorphometrically. Our results evidenced stimulation of periosteal and endocortical woven and lamellar bone formation, with increases in bone mass and decreases in bone marrow. We found that NGF enhanced the remodeling activity in the intracortical region, and induced an increase in the intracortical cavity number and area by the end of the study. In vitro results were in line with in vivo ones. We believe that the composite proposed in this study has considerable advantages in tissue engineering and is very suitable as a biomaterial for the filling of irregular defects in maxillo-facial surgery. Two areas of clinical research will be impacted by this system. The first is pharmaceutical research on drug delivery and high-throughput screening of neurotrophic-osteogenic compounds. Transplantation research is the second area that will benefit from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Alsberg, E. Hill and D. J. Mooney, Crit. Rev. Oral Biol. Med. 12 (2001) 64.

    Google Scholar 

  2. R. E. Marx, E. R. Carlson, R. M. Eichstaedt, S. R. Schimmele, J. E. Strauss and K. R. Georgeff, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85 (1998) 638.

    Google Scholar 

  3. A. H. Reddi, Nat. Biotechnol. 16 (1998) 247.

    Google Scholar 

  4. M. Lind, Acta. Orthop. Scand. Suppl. 283 (1998) 2.

    Google Scholar 

  5. M. Lind, Acta. Orthop. Scand. 67 (1998) 407.

    Google Scholar 

  6. P. Lundberg, I. Bostrom, H. Mukohyama, A. Bjurholm, K. Smans and U. H. Lerner, Regul. Pept. 85 (1999) 47.

    Google Scholar 

  7. I. Auffray, S. Chevalier, J. Froger, B. Izac, W. Vainchenker, H. Gascan and L. Coulombel, Blood 88 (1996) 1608.

    Google Scholar 

  8. Y. T. Konttinen, S. Imai and A. Suda, Acta Orthop. Scand. 67 (1996) 639.

    Google Scholar 

  9. K. Asaumi, T. Nakanishi, H. Asaha, H. Inoue and M. Takigawa, Bone 26 (2000) 625.

    Google Scholar 

  10. E. L. Hohmann, R. P. Elde, J. A. Rysavy, S. Einzig and R. L. Gebhard, Science 232 (1986) 871.

    Google Scholar 

  11. M. Hukkanen, Y. T. Kontinnen, S. Santavirta, P. Paavolainen, X. H. Gu, G. Terenghi and J. M. Polak, Neuroscience 54 (1993) 969.

    Google Scholar 

  12. A. Bjurholm, A. Kreicberg, L. Terenius, M. Goldstein and M. Schultzberg, J. Auton. Nerv. Syst. 25 (1988) 119.

    Google Scholar 

  13. A. G. Hardy and J. W. Dickson, J. Bone Jt. Surg. 45 (1963) 76.

    Google Scholar 

  14. A. A. Freehafer and W. A. Mast, ibid. 47 (1965) 683.

    Google Scholar 

  15. J. A. Gillespie, ibid. 36 (1963) 464.

    Google Scholar 

  16. W. Calvo, Am. J. Anatomy 123 (1968) 315.

    Google Scholar 

  17. U. K. Akal, N. B. Sayan, S. Aydogan and Z. Yaman, Int. J. Oral Maxillofac. Surg. 29 (2000) 331.

    Google Scholar 

  18. A. Bjurhalm, A. Kreicbergs, E. Brodin and M. Schultzberg, Peptides 9 (1998) 165.

    Google Scholar 

  19. P. Lundberg, I. Lundgren, H. Mukohyama, P. P. Lehenkari, M. A. Horton and U. H. Lerner, Endocrinology 142 (2001) 339.

    Google Scholar 

  20. L. Aloe, L. Bracci-Laudieri, S. Bonini and L. Manni, Allergy 52 (1997) 883.

    Google Scholar 

  21. U. H. Lener, Oral. Surg. Oral Med. Oral Pathol. 78 (1994) 481.

    Google Scholar 

  22. M. Yada, K. Yamaguchi and T. Tsuji, Biochem. Biophys. Res. Commun. 205 (1995) 1187.

    Google Scholar 

  23. A. Akopian, A. Demulder, S. Ouriaghli, F. Corazza, P. Fondu and P. Bergann, Peptides 21 (2000) 559.

    Google Scholar 

  24. H. A. Maurof, A. A. Quayle and P. Sloan, Int. J. Oral Maxillofac. Implants 5 (1990) 148.

    Google Scholar 

  25. K. S. Tenhuisen, R. I. Martin, M. Klimkiewicz and P. W. Brown, J. Biomed. Mater. Res. 29 (1995) 803.

    Google Scholar 

  26. A. Letic-Gavrilovic, R. Scandurra and K. Abe, Dental Mater. J. 19 (2000) 99.

    Google Scholar 

  27. M. Parfitt, K. Drezner, H. Glorieux and J. A. Kanis, J. Bone Miner. Res. 2 (1987) 595.

    Google Scholar 

  28. R. J. Tamargo and H. Brem, Neurosurg. Quart. 2 (1992) 259.

    Google Scholar 

  29. C. Xudong and M. S. Shoichet, Biomaterials 20 (1999) 329.

    Google Scholar 

  30. J. Benoit, N. Faisant, M. C. Venier-Julienne and P. Menei, J. Control. Res. 65 (2000) 285.

    Google Scholar 

  31. J.-M. Pehan, P. Menei, O. Morel, N. Claudia, Montero-Menei and J.-P. Beniot, Biomaterials 21 (2000) 2097.

    Google Scholar 

  32. F. H. Gage, J. A. Wolf, M. B. Rosenberg, L. Xu, J. K. Yee, C. Shults and T. Friedmann, Neuroscience 23 (1987) 795.

    Google Scholar 

  33. M. E. Nimni, Biomaterials 18 (1997) 1201.

    Google Scholar 

  34. C. H. Kasperk, J. E. Wergedal, S. Mohan, D. L. Long, K. H. Lau and D. J. Baylink, Growth Factors 3 (1990) 147.

    Google Scholar 

  35. W. S. S. Jee and Y. F. Ma, Bone 21 (1997) 297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Letic-Gavrilovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letic-Gavrilovic, A., Piattelli, A. & Abe, K. Nerve growth factor β(NGF β) delivery via a collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth. Journal of Materials Science: Materials in Medicine 14, 95–102 (2003). https://doi.org/10.1023/A:1022099208535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022099208535

Keywords

Navigation