Skip to main content
Log in

Aspirin Resistance and Genetic Polymorphisms

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Differences in genetic makeup or polymorphisms can affect individual drug response. Detecting genetic variation may help predict how a patient will respond to a drug and could be used as a tool to select optimal therapy, tailor dosage regimens, and improve clinical outcomes. The data are replete relative to the therapeutic efficacy of aspirin (ASA) for the prevention of ischemic events. However, there is a paucity of published data on the relationship between polymorphisms and the clinical effects on ASA. Prothrombotic genetic variations that may contribute to ASA resistance, and increased risk of cardiovascular events may involve: (1) a polymorphism on the cyclooxygenase-1 (COX-1) gene affecting Ser529; (2) overexpression of COX-2 mRNA on platelets and endothelial cells; (3) polymorphism PLA1/A2 of the gene encoding glycoprotein IIIa (GPIIIa); and (4) the homozygous 807T (873A) polymorphism allied with increased density of platelet GP Ia/IIa collagen-receptor gene. Because of the possible increased risk of ischemic vascular events, carriers of these genetic polymorphisms may be resistant to the antithrombotic effects of ASA and should be considered for additional or alternative treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International SNP Map Working Group. A map of the human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature2001;409: 928–933.

    Google Scholar 

  2. Meade TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet1986;2: 533–537.

    Google Scholar 

  3. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med1984;311: 501–505.

    Google Scholar 

  4. Jansson JK, Nilsson TK, Johnson O. von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death. Br Heart J1991;66: 351–355.

    Google Scholar 

  5. Hamsten A, De Faire U, Walldius G, et al. Plasminogen activatory inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet1987;2: 3–9.

    Google Scholar 

  6. Ridker PM, Hennekens CH, Stampfer MJ, Manson JE, Vaughan DE. Prospective study of endogenous tissue plasminogen activator and risk of stroke. Lancet1994;343: 940–943.

    Google Scholar 

  7. Cambria-Kiely JA, Gandhi PJ. Possible mechanisms of aspirin resistance. J Thromb and Thrombol2002;13: 49–56.

    Google Scholar 

  8. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. NEJM2001;345: 494–502.

    Google Scholar 

  9. Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet2001;358: 527–533.

    Google Scholar 

  10. Vu TKH, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell1991;64: 1057–1068.

    Google Scholar 

  11. Kahn ML, Zheng YW, Huang W, et al. A dual thrombin receptor system for platelet activation. Nature1998;394: 690–694.

    Google Scholar 

  12. Ruggeri ZM. New insights into the mechanisms of platelet adhesion and aggregation. Semin Hematol1994;31: 229–239.

    Google Scholar 

  13. Topol EJ, Byzova TV, Plow E. Platelet GPIIb/IIIa blockers. Lancet1999;353: 227–231.

    Google Scholar 

  14. The PURSUIT Trial Investigators: inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. N Engl J Med1998;339: 436–443.

    Google Scholar 

  15. The Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) Study Investigators. Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction. N Engl J Med1998;338: 1488–1497.

    Google Scholar 

  16. The CAPTURE Investigators: randomised placebo-controlled trial of abciximab before and during coronary intervention in refractory unstable angina: the CAPTURE study. Lancet1997;349: 1429–1435.

    Google Scholar 

  17. Kunicki TJ, Newman PJ. The molecular biology of human platelet proteins. Blood1992;80: 1396–1404.

    Google Scholar 

  18. Awtry EH, Loscalzo J. Aspirin. Circulation2000;1011206–1011218.

  19. Fitzgerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. NEJM2001;354: 433–442.

    Google Scholar 

  20. DeWitt DL, Smith WL. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc Natl Acad Sci1988;85: 1412–1416.

    Google Scholar 

  21. DeWitt DL, El-Harith EA, Kraemer SA, et al. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem1990;265: 5192–5198.

    Google Scholar 

  22. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci USA1975;72: 3073–3076.

    Google Scholar 

  23. Catella-Lawson F, et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. NEJM2001;345: 1809.

    Google Scholar 

  24. Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. Federation of American Societies for Experimental Biology Journal1991;5: 2304–2312.

    Google Scholar 

  25. Guo Q, Kulmacz RJ. Distinct influences of carboxyl terminal segment structure on function in the two iso-forms of prostglandin H synthase. Arch Biochem Biophys2000;384: 269–279.

    Google Scholar 

  26. Ren Y, Loosemitchell DS, Kulmacz RJ. Prostaglandin H synthase-1:evaluation of c-terminus function. Arch Biochem Biophys1995;316: 751–757.

    Google Scholar 

  27. Karim S, Habib A, Levy-Toledano S, et al. Cyclooxygenase-1 and - 2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem1996;271: 12042–12048.

    Google Scholar 

  28. Vane JR, Bakhle YS, Botting RM. Cyclooxygenase 1 and 2. Ann Rev Pharmacol Toxicol1998;38: 97–120.

    Google Scholar 

  29. Okahara K, Sun B, Kambayashi J. Up-regulation of prostacyclin synthesis-related gene expression by shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol1998;18: 1922.

    Google Scholar 

  30. Helgason CM, Tortorice KL, Winkler SR, et al. Aspirin response and failure in cerebral infarction. Stroke1993;24: 345–350.

    Google Scholar 

  31. Weber AA, Zimmermann KC, Meyer-Kirchrath J, Schror K. Cyclooxygenase-2 in human platelets as a possible factor in aspirin resistance. Lancet1999;353: 900.

    Google Scholar 

  32. Caughey GF, Cleland LG, Penglis PS, Gamble JR, James MJ. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol2001;167: 2831–2838.

    Google Scholar 

  33. Eikelboom JW, Hirsh J, Weit JI, et al. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation2002;105: 1650–1655.

    Google Scholar 

  34. Newman PJ. Platelet alloantigens: cardiovascular as well as immunological risk factors? Lancet1997;349: 370–371.

    Google Scholar 

  35. Nurden AT. Platelet glycoprotein IIIa polymorphism and coronary thrombosis. Lancet1997;350: 1189–1191.

    Google Scholar 

  36. Michaelson AD, Furman MI, Goldschmidt-Clermont P, et al. Platelet GP IIIa PLA polymorphisms display different sensitivities to agonists. Circulation2000;101: 1013–1018.

    Google Scholar 

  37. Andrioli G, Minuz P, Solero P, et al. Deffective platelet response to arachidonic acid and thromboxane A(2) in subjects with PL(A2) polymorphism of beta(3) subunit glycoprotein IIIa. British Journal of Haematology2000;110: 911–918.

    Google Scholar 

  38. Szczeklik A, Undas A, Sanak M, Frolow M, Wegrzyn W. Relationship between bleeding time, aspirin and the PLA1/A2 polymorphism of platelet glycoprotein IIIa. British Journal of Haematology2000;110: 965–967.

    Google Scholar 

  39. Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med1996;334: 1090–1094.

    Google Scholar 

  40. Walter DH, Schachinger V, Eisner M, Dimmeler S, Zeiher AM. Platelet glycoprotein IIIa polymorphisms and the risk of coronary stent thrombosis. Lancet1997;350: 1217–1219.

    Google Scholar 

  41. Kastrati A, Schomig A, Seyfarth M, et al. PLA polymorphism of platelet glycoprotein IIIa and risk of restenosis after coronary stent placement. Circulation1999;99: 1005–1010.

    Google Scholar 

  42. Carter AM, Ossei-Gerning N, Wilson IJ, Grant PJ. Association of the platelet PLA polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bβ448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation1997;96: 1424–1431.

    Google Scholar 

  43. Ardissino PM, Mannucci PM, Merlini PA, et al. Prothrombotic genetic risk factors in young survivors of myocardial infarction. Blood1999;94: 46–51.

    Google Scholar 

  44. Undas A, Sanak M, Musial J, Szczeklik A. Platelet glycoprotein IIIa polymorphism, aspirin, and thrombin generation (letter). Lancet1999;353: 982–983.

    Google Scholar 

  45. Dominguez-Jimenez C, Diaz-Gonzalez F, Gonzalez-Alvaro I, Cesar JM, Sanchez-Madrid F. Prevention of α IIbβ3 activation by non-steroidal antiinflammatory drugs. Federation of European Biochemical Societies Letters1999;446: 318–322.

    Google Scholar 

  46. Ridker PM, et al. PL(A1/A2) polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet1997;349: 385–388.

    Google Scholar 

  47. Herrmann SM, Poirier O, Marques-Vidal P, et al. The Leu 33/Pro polymorphism (PLA1/PLA2) of the glycoprotein IIIa (GPIIIa) receptor is not related to myocardial infarction in the ECTIM study. Thromb Haemost1997;77: 1179–1181.

    Google Scholar 

  48. Kunicki TJ, Orchekowski R, Annis D, Honda Y. Variability of integrin a2 b1 activity on human platelets. Blood1993;82: 2693.

    Google Scholar 

  49. Kunicki TJ, Kritzik M, Annis DS, Nugent DJ. Hereditary variation in platelet integrin alpha 2 beta 1 density is associated with two silent polymorphisms in the alpha 2 gene coding sequence. Blood1997;89: 1939–1943.

    Google Scholar 

  50. Moshfegh K, Wuillemin WA, Redondo M, et al. Association of two silent polymorphisms of platelet glycoprotein Ia/IIa receptor with risk of myocardial infarction. Lancet1999;353: 351–354.

    Google Scholar 

  51. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. NEJM1997;336: 1276–1282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambria-Kiely, J.A., Gandhi, P.J. Aspirin Resistance and Genetic Polymorphisms. J Thromb Thrombolysis 14, 51–58 (2002). https://doi.org/10.1023/A:1022066305399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022066305399

Navigation