Skip to main content
Log in

Adjoint and Selfadjoint Lie-group Methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In the past few years, a number of Lie-group methods based on Runge—Kutta schemes have been proposed. One might extrapolate that using a selfadjoint Runge—Kutta scheme yields a Lie-group selfadjoint scheme, but this is generally not the case: Lie-group methods depend on the choice of a coordinate chart which might fail to comply to selfadjointness.

In this paper we discuss Lie-group methods and their dependence on centering coordinate charts. The definition of the adjoint of a numerical method is thus subordinate to the method itself and the choice of the chart. We study Lie-group numerical methods and their adjoints, and define selfadjoint numerical methods. The latter are defined in terms of classical selfadjoint Runge—Kutta schemes and symmetric coordinates, based on geodesic or on flow midpoint. As result, the proposed selfadjoint Lie-group numerical schemes obey time-symmetry both for linear and nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  2. M. P. Calvo, A. Iserles, and A. Zanna, Numerical solution of isospectral flows, Math. Comp., 66 (1997), pp. 1461-1486.

    Google Scholar 

  3. F. Diele, L. Lopez, and R. Peluso, The Cayley transform in the numerical solution of unitary differential systems, Adv. Comput. Math., 8:4 (1998), pp. 317-334.

    Google Scholar 

  4. K. Engø, On the construction of geometric integrators in the RKMK class, BIT, 40:1 (2000), pp. 41-61.

    Google Scholar 

  5. K. Engø and S. Faltinsen, Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy, Reports in Informatics No. 179, Department of Informatics, University of Bergen, Norway, October 1999.

    Google Scholar 

  6. H. Flaschka, The Toda lattice I, Phys. Rev., B9 (1974), pp. 1924-1925.

    Google Scholar 

  7. E. Hairer, Backward analysis of numerical integrators and symplectic methods, Ann. Numer. Math., 1 (1994), pp. 107-132.

    Google Scholar 

  8. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Springer-Verlag, Berlin, 1993.

    Google Scholar 

  9. F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie, Berichte der Sächsischen Akademie der Wissenschaften (Math. Phys. Klasse), 58 (1906), pp. 19-48

    Google Scholar 

  10. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academ ic Press, New York, 1978.

    Google Scholar 

  11. A. Iserles, H. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta Numerica, 9 (2000), pp. 215-365.

    Google Scholar 

  12. A. Iserles and S. P. Nørsett, On the solution of differential equations in Lie groups, Phil. Trans. R. Soc. Lond. A, 357 (1999), pp. 983-1019.

    Google Scholar 

  13. A. Iserles, S. P. Nørsett, and A. Rasmussen, On the reversibility of the canonical Magnus expansion, Technical Report NA 1998/ 06, DAMTP, University of Cambridge, UK, 1998.

    Google Scholar 

  14. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  15. R. I. McLachlan, Explicit Lie-Poisson integration and the Euler equations, Phys. Rev. Lett., 71 (1993), pp. 3043-3046.

    Google Scholar 

  16. R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput., 16 (1995), pp. 151-168.

    Google Scholar 

  17. J. Moser, Stable and Random Motion in Dynamical Systems, Princeton University Press, Princeton, NJ, 1973.

    Google Scholar 

  18. H. Munthe-Kaas, High order Runge-Kutta methods on manifolds, J. Appl. Numer. Math., 29 (1999), pp. 115-127.

    Google Scholar 

  19. H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, Phil. Trans. R. Soc. Lond. A, 357 (1999), pp. 957-982.

    Google Scholar 

  20. H. Munthe-Kaas and A. Zanna, Numerical integration of differential equations on homogeneous manifolds, in F. Cucker, ed., Foundations of Computational Mathematics, Springer-Verlag, Berlin, 1997, pp. 305-315.

    Google Scholar 

  21. B. Owren and A. Marthinsen, Integration methods based on canonical coordinates of the second kind, Technical Report Numerics No. 5/ 1999, Department of Mathematical Sciences, The Norwegian University of Science and Technology, Trondheim, Norway, 1999.

    Google Scholar 

  22. A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  23. M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  24. H. Yoshida. Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), pp. 262-268.

    Google Scholar 

  25. A. Zanna, On the Numerical Solution of Isospectral Flows, PhD thesis, Newnham College, University of Cambridge, UK, 1998.

    Google Scholar 

  26. A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions, SIAM J. Numer. Anal., 36:4 (1999), pp. 1145-1182.

    Google Scholar 

  27. A. Zanna, K. Engø, and H. Z. Munthe-Kaas, Adjoint and selfadjoint Lie-group methods, Technical Report NA 1999/ 02, DAMTP, University of Cambridge, UK, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanna, A., Engø, K. & Munthe-Kaas, H.Z. Adjoint and Selfadjoint Lie-group Methods. BIT Numerical Mathematics 41, 395–421 (2001). https://doi.org/10.1023/A:1021950708869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021950708869

Navigation