Skip to main content
Log in

Assessment of myocardial viability in a porcine model of chronic coronary artery stenosis with dual dose dobutamine magnetic resonance imaging

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

In a non-surgical porcine coronary stenosis model resulting in chronic left ventricle dysfunction, we aimed in this study to evaluate the potential of magnetic resonance imaging (MRI) to distinguish dysfunctional but viable from necrotic myocardium by using multiple levels of dobutamine inotropic stimulation during a cine MRI protocol (F.P. van Rugge et al. Circulation 1994; 90: 127–138). We compared our results with histopathology. We were able to demonstrate a biphasic effect at increasing doses of dobutamine in a subgroup of animals with a high-grade coronary stenosis, while in another subgroup the coronary stenosis produced a chronic myocardial infarction, in which no functional recovery could be obtained. In this experimental protocol, dual dose dobutamine MRI proved to be an accurate and reproducible technique to perform viability studies in chronic obstructive coronary artery disease. It permits distinguishing chronic ischemic, but viable myocardium from infarcted tissue. The detection of chronically underperfused but potentially salvageable myocardium is of significant clinical importance since it may aid in determining which patients are eligible for revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117: 211–221.

    Google Scholar 

  2. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the 'hibernating myocardium'. J Am Coll Cardiol 1986; 8: 1467–1470.

    Google Scholar 

  3. Heusch G. Hibernating myocardium. Physiol Rev 1998; 78: 1055–1085.

    Google Scholar 

  4. Maes A, Flameng W, Nuyts J, et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994; 90: 735–745.

    Google Scholar 

  5. Di Carli MF, Maddahi J, Rokhsar S, et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 1998; 116: 997–1004.

    Google Scholar 

  6. Chaudhry FA, Tauke JT, Alessandrini RS, Vardi G, Parker MA, Bonow RO. Prognostic implications of myocardial contractile reserve in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 1999; 34: 730–738.

    Google Scholar 

  7. Vanoverschelde JL, Wijns W, Borgers M, et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation 1997; 95: 1961–1971.

    Google Scholar 

  8. Gunning MG, Anagnostopoulos C, Knight CJ, et al. Comparison of 201Tl, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998; 98: 1869–1874.

    Google Scholar 

  9. Baer FM, Voth E, Theissen P, Schneider CA, Schicha H, Sechtem U. Coronary artery disease: findings with GRE MR imaging and Tc-99m-methoxyisobutyl-isonitrile SPECT during simultaneous dobutamine stress. Radiology 1994; 193: 203–209.

    Google Scholar 

  10. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradientecho magnetic resonance imaging and positron emission tomography with. Circulation 1995; 91: 1006–1015.

    Google Scholar 

  11. Udelson JE. Steps forward in the assessment of myocardial viability in left ventricular dysfunction. Circulation 1998; 97: 833–838.

    Google Scholar 

  12. Martin TW, Seaworth JF, Johns JP, Pupa LE, Condos WR. Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 1992; 116: 190–196.

    Google Scholar 

  13. Picano E, Mathias W Jr, Pingitore A, Bigi R, Previtali M. Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet 1994; 344: 1190–1192.

    Google Scholar 

  14. Cigarroa CG, deFilippi CR, Brickner ME, Alvarez LG, Wait MA, Grayburn PA. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 1993; 88: 430–436.

    Google Scholar 

  15. Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 1987; 163: 697–702.

    Google Scholar 

  16. Semelka RC, Tomei E, Wagner S, et al. Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 1990; 174: 763–768.

    Google Scholar 

  17. Haag UJ, Hess OM, Maier SE, et al. Left ventricular wall thickness measurements by magnetic resonance: a validation study. Int J Card Imaging 1991; 7: 31–41.

    Google Scholar 

  18. Schulen V, Schick F, Loichat J, et al. Evaluation of K-space segmented cine sequences for fast functional cardiac imaging. Invest Radiol 1996; 31: 512–522.

    Google Scholar 

  19. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 1995; 195: 471–478.

    Google Scholar 

  20. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999; 99: 763–770.

    Google Scholar 

  21. Nagueh SF, Mikati I, Weilbaecher D, et al. Relation of the contractile reserve of hibernating myocardium to myocardial structure in humans. Circulation 1999; 100: 490–496.

    Google Scholar 

  22. Sechtem U, Baer FM, Voth E, Theissen P, Schneider CA. Stress functional MRI: detection of ischemic heart disease and myocardial viability. J Magn Reson Imaging 1999; 10: 667–675.

    Google Scholar 

  23. Chen C, Li L, Chen LL, et al. Incremental doses of dobutamine induce a biphasic response in dysfunctional left ventricular regions subtending coronary stenoses. Circulation 1995; 92: 756–766.

    Google Scholar 

  24. Bax JJ, Cornel JH, Visser FC, et al. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996; 28: 558–564.

    Google Scholar 

  25. Hata T, Nohara R, Fujita M, et al. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction. Usefulness of low-dose dobutamine infusion. Circulation 1996; 94: 1834–1841.

    Google Scholar 

  26. van Rugge FP, van der Wall EE, Spanjersberg SJ, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 1994; 90: 127–138.

    Google Scholar 

  27. van der Geest RJ, Buller VG, Jansen E, et al. Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J Comput Assist Tomogr 1997; 21: 756–765.

    Google Scholar 

  28. Brenner H, Kliebsch U. Dependence of weighted kappa coefficients on the number of categories. Epidemiology 1996; 7: 199–202.

    Google Scholar 

  29. Buda AJ, Zotz RJ, Gallagher KP. The effect of inotropic stimulation on normal and ischemic myocardium after coronary occlusion. Circulation 1987; 76: 163–172.

    Google Scholar 

  30. Ruffolo RR Jr. The pharmacology of dobutamine. Am J Med Sci 1987; 294: 244–248.

    Google Scholar 

  31. Baer FM, Theissen P, Schneider CA, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 1998; 31: 1040–1048.

    Google Scholar 

  32. Szolar DH, Saeed M, Wendland MF, et al. MR imaging characterization of postischemic myocardial dysfunction ('stunned myocardium'): relationship between functional and perfusion abnormalities. J Magn Reson Imaging 1996; 6: 615–624.

    Google Scholar 

  33. Gunning MG, Chua TP, Harrington D, et al. Hibernating myocardium: clinical and functional response to revascularisation. Eur J Cardiothorac Surg 1997; 11: 1105–1112.

    Google Scholar 

  34. van Rugge FP, van der Wall EE, de Roos A, Bruschke AV. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 1993; 22: 431–439.

    Google Scholar 

  35. Baer FM, Theissen P, Crnac J, et al. Head to head comparison of dobutamine-transoesophageal echocardiography and dobutamine-magnetic resonance imaging for the prediction of left ventricular functional recovery in patients with chronic coronary artery disease. Eur Heart J 2000; 21: 981–991.

    Google Scholar 

  36. van der Geest RJ, Lelieveldt BP, Reiber JH. Quantification of global and regional ventricular function in cardiac magnetic resonance imaging. Top Magn Reson Imaging 2000; 11: 348–358.

    Google Scholar 

  37. Pennell DJ, Underwood SR, Manzara CC, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992; 70: 34–40.

    Google Scholar 

  38. Dendale PA, Franken PR, Waldman GJ, et al. Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 1995; 130: 134–140.

    Google Scholar 

  39. Hundley WG, Hamilton CA, Thomas MS, et al. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 1999; 100: 1697–1702.

    Google Scholar 

  40. Gallagher KP, Gerren RA, Ning XH, et al. The functional border zone in conscious dogs. Circulation 1987; 76: 929–942.

    Google Scholar 

  41. Homans DC, Asinger R, Elsperger KJ, et al. Regional function and perfusion at the lateral border of ischemic myocardium. Circulation 1985; 71: 1038–1047.

    Google Scholar 

  42. Trevi GP, Sheiban I. Chronic ischaemic ('hibernating') and postischaemic ('stunned') dysfunctional but viable myocardium. Eur Heart J 1991; 12(Suppl.G): 20–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dymarkowski, S., Szilard, M., Maes, A. et al. Assessment of myocardial viability in a porcine model of chronic coronary artery stenosis with dual dose dobutamine magnetic resonance imaging. Int J Cardiovasc Imaging 19, 63–72 (2003). https://doi.org/10.1023/A:1021781205016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021781205016

Navigation