Skip to main content
Log in

Developments in in situ Environmental Cell High-Resolution Electron Microscopy and Applications to Catalysis

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

High-resolution in situ controlled-environment electron microscopy (environmental cell TEM (ETEM) or ECELL) instrumentation and techniques, and some of the key applications to dynamic reaction studies in catalysis, are reviewed. Developments over the past decade or so have led to the novel development of ETEM for in situ studies on the atomic scale of operating catalysts under controlled environments. The powerful ETEM technique enables direct access to the important, but often metastable with respect to temperature and gas atmosphere, intermediate phases in dynamic catalysis processes. Unique insights are provided into reaction mechanisms and the sequences of microstructural and nanochemical evolution of catalyst active site structures associated with selectivity and activity, and potential deactivation and poisoning. The examples demonstrate the pivotal role of ETEM in understanding, developing and controlling novel catalysts and processes. The latest developments include wet-ETEM for in situ dynamic studies of liquid--solid reactions in polymerization and molecular electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Gai, Catal. Rev. Sci. Eng. 34 (1992) 1.

    Google Scholar 

  2. P.B. Hirsch et al., Electron Microscopy of Thin Crystals (Butterworths, London, 1965).

    Google Scholar 

  3. R. Sinclair, T. Yamashita and F. Á. Ponce, Nature 290 (1981) 386.

    Google Scholar 

  4. H. Saka et al., In situ Electron Microscopy in Materials Research, ed. P.L. Gai (Kluwer Academic, London, Boston, 1997).

    Google Scholar 

  5. D.W. Pashley, M.J. Stowell, M.H. Jacobs and T.J. Law, Phil. Mag. 10 (1964) 127.

    Google Scholar 

  6. K. Yagi et al., Thin Solid Films 126 (1985) 95.

    Google Scholar 

  7. J.M. Thomas and W.J. Thomas, Principles and Practices of Het.s Catalysis (VCH, 1997).

  8. H. Hashimoto et al., Jpn. J. Appl. Phys. 7 (1968) 946.

    Google Scholar 

  9. P.R. Swann and N. Tighe, Jernkont. Ann. 155 (1971) 251.

    Google Scholar 

  10. E.P. Butler and K.F. Hale, Dynamic Experiments in Electron Microscopy (North Holland, Amsterdam, 1981).

    Google Scholar 

  11. D. Double, A. Hellawell and S. Perry, Proc. Roy. Soc. A359 (1978) 435.

    Google Scholar 

  12. D.F. Parsons et al., Science 186 (1974) 407.

    Google Scholar 

  13. H. Fujita et al. (eds.), In situ Experiments in HVEM (Osaka University Press, 1985).

    Google Scholar 

  14. R.C. Doole, G. Parkinson and J.M. Stead, Inst. Phys. Conf. Ser. 119 (1991) 161.

    Google Scholar 

  15. R.T.K. Baker, Catal. Rev. Sci. Eng. 19 (1979) 161.

    Google Scholar 

  16. P.L. Gai and P.B. Hirsch, Proc. Climax Mo Co. Ltd and Chemical Society (Dalton Division) Conference, University of Oxford, UK, 1976; J. Less. Comm. Metals 54 (1977) 263.

    Google Scholar 

  17. P.L. Gai, C.J. Humphreys, A.E. Webb, D.R. Pyke and J.C.J. Bart, Inst. Phys. Conf. Ser. 52 (1980) 317.

    Google Scholar 

  18. P.L. Gai, Phil. Mag. 43 (1981) 841.

    Google Scholar 

  19. P.L. Gai and M.J. Goringe, Proc. 39th Electron Microscopy Society of America (San Francisco Press, 1981) p. 68.

  20. P.L. Gai, E.D. Boyes and J.C.J. Bart, Phil. Mag. A45 (1982) 531.

    Google Scholar 

  21. P.L. Gai, J. Solid State Chem. 49 (1983) 25; Phil. Mag. 48 (1983) 359.

    Google Scholar 

  22. P.L. Gai and P.A. Labun, J. Catal. 94 (1985) 79.

    Google Scholar 

  23. P.L. Gai, B.C. Smith and G. Owen, Nature 348 (1990) 430.

    Google Scholar 

  24. P.L. Gai and B.C. Smith, Ultramicroscopy 34 (1990) 17.

    Google Scholar 

  25. P.L. Gai, J. Solid State Chem. 104 (1993) 119.

    Google Scholar 

  26. K.H. Westmacott and U. Dahmen, in: Decomposition of Alloys, ed. P. Haasen et al. (Pergamon, 1984).

  27. T.C. Lee, D. Dewald, J. Eades, I.M. Roberetson and H.K. Birnbaum, Rev. Sci. Instr. 62 (1991) 1438.

    Google Scholar 

  28. P. L. Gai et al., Science 267 (1995) 661.

    Google Scholar 

  29. P.L. Gai and E.D. Boyes, In situ Microscopy in Materials Research (Kluwer, Boston, London, 1997).

    Google Scholar 

  30. E.D. Boyes and P.L. Gai, Ultramicroscopy 67 (1997) 219.

    Google Scholar 

  31. P.L. Gai, Acta. Cryst. B53 (1997) 346.

    Google Scholar 

  32. P.L. Gai, Adv. Mater. 10 (1998) 1259.

    Google Scholar 

  33. P.L. Gai, Topics Catal. 8 (1999).

  34. J. Haggin, Chem. Eng. News 73(30) (1995) 39.

    Google Scholar 

  35. E.D. Boyes and P.L. Gai, Electron Microscopy (ICEM 14), ed. H.A. Claderon Benavides and M.J. Yacaman (Institute of Physics Publishers, 1998) p. 511.

  36. T.W. Hansen et al., Proc 12th Euro. Congr. on EM (Czech Electron Microscopy Society, 2000) p. 537; Science 294 (2001) 1508.

  37. V. Oleshko, P. Crozier, R. Cantrell and A. Westwood, J. Electron Micr. 51 (2002) S27.

    Google Scholar 

  38. P. Crozier, R. Sharma and A. Datye, Proc. Micr. Soc. Am. 4 (1998) 228.

    Google Scholar 

  39. R. Sharma and P. Crozier, Electron Microsc. Anal. (1999) 569.

  40. M.J. Goringe, A. Rawli., A. Burden, J. Hutchison and R. Doole, Faraday Disc. 105 (1996) 102.

    Google Scholar 

  41. P.L. Gai, K. Kourtakis and S. Ziemecki, Microsc. Microanal. 6 (2000) 335.

    Google Scholar 

  42. P.L. Gai, Curr. Opin. Solid State Mater. Sci. 4 (1999) 63.

    Google Scholar 

  43. G. Centi (ed.), Catal. Today 16 (1993).

  44. Yu.E. Gorbunova and S.A. Linde, Sov. Phy-Dockl (Engl.Trans.) 24 (1979) 138.

    Google Scholar 

  45. P.L. Gai, D.R. Coulson, K. Kourtakis and G.C. Sonnichsen, J. Phys.Chem. 101 (1997) 9916.

    Google Scholar 

  46. R.F. Service, Science 294 (2001) 2442, and references therein.

    Google Scholar 

  47. P.L. Gai and M.A. Harmer, Nano Lett. 2 (2002) 771.

    Google Scholar 

  48. M.P. Zach et al., Science 290 (2000) 2120.

    Google Scholar 

  49. M.S. Dresselhaus, Y. Lin, S.B. Cronin, O. Rabin, M. Black and G. Dresselhaus, Low Dim Thermoel: Recent Trends in Thermoel. Mater. Research, ed. T.M. Tritt (Academic Press, 2001) p. 1.

  50. S.B. Cronin, Y. Lin, O. Rabin, M. Black, G. Dresselhaus, M.S. Dresselhaus and P.L. Gai, Microsc. Microanal. 8 (2002) 58.

    Google Scholar 

  51. N. Jana, L. Gearhart and C.J. Murphy, J. Phys. Chem. B 105 (2001) 4065.

    Google Scholar 

  52. P.L. Gai, Microsc. Microanal. 8 (2002) 21.

    Google Scholar 

  53. S. Ino, J. Phys. Soc. Japn 21 (1966) 346.

    Google Scholar 

  54. M. Gillet, Surf. Sci. 67 (1977) 139.

    Google Scholar 

  55. L.D. Marks and D.J. Smith, J. Cryst. Growth 5 (1981) 12.

    Google Scholar 

  56. M.J. Yacaman et al., Surf. Sci. Lett. 486 (2001) L449.

    Google Scholar 

  57. P.L. Gai, Curr. Opin Solid State Mater. Sci. 5 (2001) 371.

    Google Scholar 

  58. F. Nagata and I. Ishikawa, Jpn. J. Appl. Phys. 11 (1972) 1293.

    Google Scholar 

  59. K. Fukushima, A. Ishikawa and A. Fukami, J. Electron Micr. 34 (1985) 47.

    Google Scholar 

  60. T. Daulton, B. Little, K. Lowe and J. Jones Meehan, Proc. MSA (2001) 134.

  61. C. De Bellefon and P. Fouilloux, Catal. Rev. Sci. Eng. 36 (1994) 459.

    Google Scholar 

  62. P.L. Gai and E.D. Boyes, Electron Microscopy in Heterogeneous Catalysis (Institute of Physics Publishing) (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, P.L. Developments in in situ Environmental Cell High-Resolution Electron Microscopy and Applications to Catalysis. Topics in Catalysis 21, 161–173 (2002). https://doi.org/10.1023/A:1021333310817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021333310817

Navigation