Skip to main content
Log in

Physiologically Based Pharmacokinetics of Cyclosporine A: Reevaluation of Dose–Nonlinear Kinetics in Rats

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The disposition kinetics of Cyclosporine A (CyA) in rat, based on measurement in arterial blood, appeared dose-linear over a wide iv dose range (1.2–30mg/kg). Physiologically based pharmacokinetic (PBPK) analysis, however, demonstrated that this was an apparent observation resulting from counterbalancing nonlinear factors, such as saturable blood and tissue distribution, as well as clearance (CLb ). A PBPK model was successfully developed taking into account these multiple nonlinear factors. Tissue distribution was distinctly different among various organs, being best described by either a linear model (muscle, fat; Model 1), one involving instantaneous saturation (lung, heart, bone, skin, thymus; Model 2), noninstantaneous saturation (kidney, spleen, liver, gut; Model 3), or one with saturable efflux (brain; Model 4). Overall, the whole body volume of distribution at steady state for unbound CyA (Vuss ) decreased with increasing dose, due at least in part to saturation of tissue-cellular cyclophilin binding. Clearance, essentially hepatic, and described by the well-stirred model, was also adequately characterized by Michaelis–Menten kinetics, Km 0.60 μg/ml. In model-based simulations, both volume of distribution at steady state (V ss,b ) and CLb varied in a similar manner with dose, such that terminal t 1/2 remained apparently unchanged; these dose responses were attenuated by saturable blood binding. CyA concentration measured in arterial blood was not always directly proportional to the true exposure, i.e., unbound or target tissue concentrations. The PBPK model not only described comprehensively such complicated PK relationships but also permitted assessment of the sensitivity of individual parameters to variation in local nonlinear kinetics. Using this approach, dose-dependent CyA uptake into brain was shown to be sensitive to both active and passive transport processes, and not merely the affinity of the active (efflux) transporter at the level of the blood–brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Bower. Therapeutic monitoring for cyclosporine: difficulties in establishing a therapeutic window. Clin. Biochem. 24:81–87 (1991).

    Article  Google Scholar 

  2. B. Legg and M. Rowland, Cyclosporin: erythrocyte binding and an examination of its use to estimate unbound concentrations. Ther. Drug. Monit. 10:16–19 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. R. Kawai and M. Lemaire. Role of blood cell uptake on cyclosporin pharmacokinetics. In P. Tillement and H. Eckert (eds.), Proceeding of the International Symposium on Blood Binding and Drug Transfer, EFC Publishing, Paris, 1993, pp. 89–108.

    Google Scholar 

  4. A. Bernareggi and M. Rowland. Physiological modeling of cyclosporin kinetics in rat and man. J. Pharmacokin. Biopharm. 19:21–50 (1991).

    Article  CAS  Google Scholar 

  5. R. Kawai, D. Mathew, C. Tanaka, and M. Rowland. Physiologically-based pharmacokinetics of Cyclosporine A: Extension to tissue distribution kinetics in rat and scale-up to human. J. Pharmacol. Exp. Ther. 287:457–468 (1998).

    CAS  PubMed  Google Scholar 

  6. C. Tanaka, R. Kawai, and M. Rowland. Dose-dependent pharmacokinetics of Cyclosporine A in rat: Events in tissues. Drug Metab. Dispos. 28:582–589 (2000).

    CAS  PubMed  Google Scholar 

  7. R. Kawai, M. Lemaire, J. L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. J. Pharmacokin. Biopharm. 22:327–365 (1994).

    Article  CAS  Google Scholar 

  8. M. Lemaire and P. Tillement. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J. Pharm. Pharmacol. 34:715–718 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. C. Sloop, L. Dory, and P. Roheim. Interstitial fluid lipoproteins. J. Lipid Res. 28:225–237 (1987).

    CAS  PubMed  Google Scholar 

  10. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  11. M. Rowland and T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications. 3rd ed., Williams and Wilkins, Philadelphia, 1995, pp. 313–335, 485–489.

    Google Scholar 

  12. H. Akaike. An information criterion (AIC). Math. Sci. 14(153):5–9 (1976).

    Google Scholar 

  13. A. Sakata, I. Tamai, K. Kawazu, Y. Deguchi, T. Ohnishi, A. Saheki, and A. Tsuji. In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of Cyclosporin A at the blood brain barrier. Biochem. Pharmacol. 48:1989–1992 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. A. Shirai, M. Naito, T. Tatsuta, J. Dong, K. Hanaoka, K. Mikami, T. Oh-hara, and T. Tsuruo. Transport of cyclosporin A across the brain capillary endothelial cell monolayer by P-glycoprotein. Biochim. Biophys. Acta 1222:400–404 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. A. Tsuji, I. Tamai, A. Sakata, Y. Tenda, and T. Terasaki. Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Biochem. Pharmacol. 46:1096–1099 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. W. F. Ebling, D. R. Wada, and D. R. Stanski. From piecewise to full physiologic pharmacokinetic modeling: Applied to thiopental disposition in the rat. J. Pharmacokin. Biopharm. 22:259–292 (1994).

    Article  CAS  Google Scholar 

  17. S. Bjorkman, D. R. Wada, D. R. Stanski, and W. F. Ebling. Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric singletissue models. J. Pharmacokin. Biopharm. 22:381–410 (1994).

    Article  CAS  Google Scholar 

  18. G. M. Blakey, I. A. Nestorov, P. A. Arundel, L. J. Aarons, and M. Rowland. Quantitative structure-pharmacokinetics relationships: I. Development of a whole-body physiologically based model to characterize changes in the pharmacokinetics across a homologous series of barbiturates in the rat. J. Pharmacokin. Biopharm. 25:277–312 (1997).

    Article  CAS  Google Scholar 

  19. S. Song, H. Suzuki, R. Kawai, C. Tanaka, I. Akasaka, and Y. Sugiyama. Dose-dependent effects of PSC 833 on its tissue distribution and on the biliary excretion of endogenous substrates in rats. Drug Metab. Dispos. 26:1128–1133 (1998).

    CAS  PubMed  Google Scholar 

  20. J. A. Fairley. Intracellular targets of cyclosporine. J. Am. Acad. Dermatol. 23:1329–1334 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. M. L. McDonald, T. Ardito, W. H. Marks, M. Kashgarian, and H. Lorber. The effect of cyclosporine administration on the cellular distribution and content of cyclophilin. Transplantation 53:460–466 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. A. Vickers, V. Fischer, S. Connors, R. Fischer, J. P. Baldeck, G. Maurer, and K. Brendel. Cyclosporin A metabolism in human liver, kidney, and intestine slices: Comparison to rat and dog slices and human cell lines. Drug Metab. Dispos. 20:802–809 (1992).

    CAS  PubMed  Google Scholar 

  23. B. M. J. Foxwell, A. Mackie, V. Ling, and B. Ryffel. Identification of the multidrug-resistance related P-glycoprotein as a cyclosporine binding protein. Mol. Pharmacol. 36:543–546 (1988).

    Google Scholar 

  24. D. C. Dalgarno, M. W. Harding, A. Lazarides, R. Handschumacher, and I. M. Armitage. 1H NMR studies on bovine cyclophilin: Preliminary structural characterization of this specific cyclosporin A binding protein. Biochemistry 25:6778 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. B. Ryffel. Cyclosporin binding proteins. Biochem. Pharmacol. 46:1–12 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. P. C. De Groen, A. J. Aksamit, J. Rakela, G. S. Forbes, and R. Krom. Central nervous system toxicity after liver transplantation. The role of cyclosporine and cholesterol. New Engl. J. Med. 317:861–866 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. M. Lemaire, A. Bruelisauer, P. Guntz, and H. Sato. Dose-dependent brain penetration of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin, in rats. Cancer Chemother. Pharmacol. 38:481–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. L. C. Racusen, L. M. Famiglio, B. A. Fivush, D. S. Olton, and K. Solez. Neurological abnormalities and mortality in rats treated with cyclosporine A. In B. D. Kahan (ed.), Cyclosporine: Therapeutic use in transplantation. Transplantation Proceedings Reprint (June Suppl. 3), Grune and Stratton Inc., New York, 1988, pp. 934–936.

    Google Scholar 

  29. A. H. Schinkel, E. Wagenaar, L. V. Deemter, C. A. A. M. Mol, and P. Borst. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96:1698–1705 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, C., Kawai, R. & Rowland, M. Physiologically Based Pharmacokinetics of Cyclosporine A: Reevaluation of Dose–Nonlinear Kinetics in Rats. J Pharmacokinet Pharmacodyn 27, 597–623 (1999). https://doi.org/10.1023/A:1020978509566

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020978509566

Navigation