Skip to main content
Log in

Changes in NMDAR2 Subunit mRNA Levels During Pentobarbital Tolerance/Withdrawal in the Rat Brain: An In Situ Hybridization Study

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Little is known about the functional modulation of NMDA receptor subunits at the molecular level. Therefore, a series of experiments were conducted to elucidate more fully the role of NMDA receptor subtypes in pentobarbital tolerance and withdrawal. We investigated the influence of centrally administered pentobarbital on the regulation of mRNA levels of the family of NMDA receptor 2 (NR2) subtypes (NR2A, NR2B, and NR2C) by in situ hybridization histochemistry in rat brain. Animals were rendered tolerant by continuous intracerebroventricular (i.c.v.) infusion with pentobarbital (300 μg/10 μl/hr for 6 days) through pre-implanted cannulae connected to osmotic mini-pumps, and dependent, by abrupt withdrawal from pentobarbital. The NR2A subunit mRNA was increased in cortical areas in pentobarbital tolerant and withdrawal rats. In contrast, the NR2B mRNA was decreased in parietal cortex and hippocampus in both tolerance and withdrawal rats. The level of NR2C mRNA was increased in withdrawal rats, while there was no change in tolerant rats. These results indicate that continuous i.c.v. infusion with pentobarbital alters NR2 subunit mRNA expression in the rat brain, suggesting that NR2 subunits may play an important role in the development of tolerance to and withdrawal from pentobarbital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ho, I. K., and Harris, R. A. 1981. Mechanism of action of barbiturates. Ann. Rev. Pharmacol. Toxicol. 21:83-111.

    Google Scholar 

  2. Kimura, T., Miyaoka, T., Saunders, P. A., Baker, M. L., Hume, A. S., Yamamoto, I., and Ho, I. K. 1993. Induction of tolerance to and physical dependence on pentobarbital continuous intracerebroventricular administration. J. Pharmacol. Exp. Ther. 266:1300-1305.

    PubMed  Google Scholar 

  3. Tseng, Y. I., Miyaoka, T., and Ho, I. K. 1993. Region-specific changes of GABAA receptors by tolerance to and dependence upon pentobarbital. Eur. J. Pharmacol. 236:23-30.

    PubMed  Google Scholar 

  4. Sawada, S., and Yamamoto, C. 1985. Blocking action of pentobarbital on receptors for excitatory amino acids in the guinea pig hippocampus. Exp. Brain Res. 59:226-231.

    PubMed  Google Scholar 

  5. Rabbani, M., Wright, J., Butterworth, A. R., Zhou, Q., and Little, H. J. 1994. Possible involvement of NMDA receptor-mediated transmission in barbiturate physical dependence. Br. J. Pharmacol. 111:89-96.

    PubMed  Google Scholar 

  6. Teichberg, V., Tal, N., Goldberg, O., and Luini, A. 1984. Barbiturates, alcohols and the CNS excitatory neurotransmission: specific effects on the kainate and quisqualate receptors. Brain Res. 291:285-292.

    PubMed  Google Scholar 

  7. Marszalec, W., and Narahashi, T. 1993. Use-dependent pentobarbital block of kainate and quisqualate currents. Brain Res. 608:7-15.

    PubMed  Google Scholar 

  8. Morgan, W., Bermudez, J., and Chang, X. 1991. The relative potency of pentobarbital in suppressing the kainic acid-or the N-methyl-D-aspartic acid-induced enhancement of cGMP in cerebellar cells. Eur. J. Pharmacol. 204:335-338.

    PubMed  Google Scholar 

  9. Short, K. R., and Tabakoff, B. 1993. Chronic barbiturate treatment increases NMDA receptors but decreases kainate receptors in mouse cortex. Eur. J. Pharmacol. 230:111-114.

    PubMed  Google Scholar 

  10. Laurie, D. J., and Seeburg, P. H. 1994. Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 268:335-345.

    Google Scholar 

  11. Morriyoshi, K., Masu, M., Ishii, T, Shigemoto, R., Mizuno, N., and Nakanishi, S. 1991. Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31-37.

    PubMed  Google Scholar 

  12. Monyor, H., Sprengel, R., Scheopfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmenn, B., and Seeburg, P. H. 1992. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217-1221.

    Google Scholar 

  13. Ishii, T., Morriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and Nakanishi, S. 1993. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268:2836-2843.

    PubMed  Google Scholar 

  14. Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and Mishina, M. 1992. Molecular diversity of the NMDA receptor channel. Nature 358:36-41.

    PubMed  Google Scholar 

  15. Stern, P., Bepe, P., Schoepfer, R., and Colquhoun, D. 1992. Single channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. Biol. 250:271-277.

    PubMed  Google Scholar 

  16. Buller, A. M., Larson, H. C., Schneider, B. E., Beaton, J. A., Morrisett, R. A., and Monaghan, D. T. 1994. The molecular basis of NMDA receptor subtypes: Native receptor diversity is predicted by subunit composition. J. Neurosci. 14:5471-5484.

    PubMed  Google Scholar 

  17. Lynch, D. R., Anegawa, N. J., Verdorn, T., and Pritchett, D. B. 1994. N-Methyl-D-aspartate receptors: different subunit requirements for binding of glutamate antagonists, glycine antagonists and channel blocking agents. Mol. Pharmacol. 45:540-545.

    PubMed  Google Scholar 

  18. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W. 1988. Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc. Natl. Acad. Sci. USA. 85:9836-9840.

    PubMed  Google Scholar 

  19. Honoré, T., Drejer, J., Nielsen, F. O., Watkins, J. C., Olverman, H. J., and Nielsen, M. 1989. Molecular target size of the NMDA-receptor complex in rat cortex. Eur. J. Pharmacol. 172:239-247

    PubMed  Google Scholar 

  20. Ebert, B., Wong, E. H. F., and Krogsgaard-Larson, P. 1991. Identification of a novel NMDA receptor in rat cerebellum. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 208:49-52.

    Google Scholar 

  21. Monaghan, D. T., and Beaton, J. A. 1991. Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur. J. Pharmacol. 194:123-125.

    PubMed  Google Scholar 

  22. Ito, T., Suzuki, T., Wellman, S. E., and Ho, I. K. 1996. Chronic pentobarbital administration alters γ-aminobutyric acidA receptor α6-subunit mRNA levels and diazepam-insensitive [3H]Ro15-4513 binding. Synapse 22:106-113.

    PubMed  Google Scholar 

  23. Tseng, Y. T., Wellman, S. E., and Ho, I. K. 1994. In situ hybridization evidence of differential modulation by pentobarbital of GABAA receptor α1-and β3 subunit mRNAs. J. Neurochem. 63:301-309.

    PubMed  Google Scholar 

  24. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates, 2nd edit. Academic Press, Orlando, Florida.

    Google Scholar 

  25. Beaton, J. A., Stemsrud, K., and Monaghan, D. T. 1992. Identification of a novel N-methyl-D-aspartate receptor population in the rat medial thalamus. J. Neurochem. 59:754-757.

    PubMed  Google Scholar 

  26. Porter, R. H., and Greenamyre, J. T. 1995. Regional variations in the pharmacology of NMDA receptor channel blockers: Implications for therapeutic potential. J. Neurochem. 64:614-623.

    PubMed  Google Scholar 

  27. Oh, S., Hoshi, K., and Ho, I. K. 1997. Role of NMDA receptors in pentobarbital tolerance/dependence. Neurochem. Res. 22:767-774.

    PubMed  Google Scholar 

  28. Nicoll, R. A., Eccles, J. C., Oshima, T., and Rubia, F. 1975. Prolongation of hippocampal inhibitory post-synaptic potentials by barbiturates. Nature 258:625-627.

    PubMed  Google Scholar 

  29. Ticku, M. K., and Olsen, R. W. 1978. Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci. 22:1643-1651.

    PubMed  Google Scholar 

  30. Morrow, A. L., Montpied, P., Lingford-Hughes, A., and Paul, S. M. 1990. Chronic ethanol and pentobarbital administration in the rat: effects on GABAA receptor function and expression in brain. Alcohol 7:273-244.

    PubMed  Google Scholar 

  31. Sanna, E., Serra, M., Cossu, A., Colombo, G., Follesa, P., Cuccheddu, T., Concas, A., and Biggio, G. 1993. Chronic ethanol intoxication induces differential effects on GABAA and NMDA receptor function in the rat brain. Alcohol. Clin. Exp. Res. 17:115-123.

    PubMed  Google Scholar 

  32. Wenzel, A., Fritschy, J. M., Mohler, Hanns, and Benke, D. 1997. NMDA receptor Heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 68:469-478.

    PubMed  Google Scholar 

  33. Resink, A., Villa, M., Benke, D., Möhler, H., and Balázs, R. 1995. Regulation of the expression of NMDA receptor subunits in rat cerebellar granule cells: effect of chronic K+-induced depolarization and NMDA exposure. J. Neurochem. 64:558-565.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, CG., Oh, S. & Ho, I.K. Changes in NMDAR2 Subunit mRNA Levels During Pentobarbital Tolerance/Withdrawal in the Rat Brain: An In Situ Hybridization Study. Neurochem Res 23, 1371–1377 (1998). https://doi.org/10.1023/A:1020746505854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020746505854

Navigation