Skip to main content
Log in

Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Pseudomonas putida WCS358r, genetically modified to have improved activity against soil-borne pathogens, was released into the rhizosphere of wheat. Two genetically modified derivatives carried the phzor the phl biosynthetic gene loci and constitutively produced either the antifungal compound phenazine-1-carboxylic acid (PCA) or the antifungal and antibacterial compound 2,4-diacetylphloroglucinol (DAPG). In 1997 and 1998, effects of single introductions of PCA producing derivatives on the indigenous microflora were studied. A transient shift in the composition of the total fungal microflora, determined by amplified ribosomal DNA restiction analysis (ARDRA), was detected. Starting in 1999, effects of repeated introduction of genetically modified microorganisms (GMMs) were studied. Wheat seeds coated with the PCA producer, the DAPG producer, a mixture of the PCA and DAPG producers, or WCS358r, were sown and the densities, composition and activities of the rhizosphere microbial populations were measured. All introduced strains decreased from 107CFU per gram of rhizosphere sample to below the detection limit after harvest of the wheat plants. The phz genes were stably maintained in the PCA producers, and PCA was detected in rhizosphere extracts of plants treated with this strain or with the mixture of the PCA and DAPG producers. The phl genes were also stably maintained in the DAPG producing derivative of WCS358r. Effects of the genetically modified bacteria on the rhizosphere fungi and bacteria were analyzed by using amplified ribosomal DNA restriction analysis. Introduction of the genetically modified bacterial strains caused a transient change in the composition of the rhizosphere microflora. However, introduction of the GMMs did not affect the several soil microbial activities that were investigated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JPE & Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10: 215–221.

    Article  CAS  Google Scholar 

  • Austin HK, Hartel PG & Coleman DC (1990 Effects of genetically altered Pseudomonas solanacearum on predatory protozoa. Soil Biol. Biochem. 22: 115–117.

    Article  Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ & Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth. J. Plant Pathol. 92: 249–256.

    Article  Google Scholar 

  • Bangera MG & Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155–3163.

    PubMed  CAS  Google Scholar 

  • Bonsall RF, Weller DM & Thomashow LS (1997) Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol. 63: 951–955.

    PubMed  CAS  Google Scholar 

  • Cook J, Bruckart WL, Coulson JR, Goettel MS, Humber RA, Lumsden RD, Maddox JV, McManus ML, Moore L, Meyer SF, Quimby PC, Stack JP & Vaughn JL (1996) Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biol. Control 7: 333–351.

    Article  Google Scholar 

  • De Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS & Lynch JM (1995) Impact of field release of a genetically-modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl. Environ. Microbiol. 61: 3443–3453.

    PubMed  CAS  Google Scholar 

  • De Leij FAAM, Thomas CE, Bailey MJ, Whipps JM & Lynch JM (1998) Effect of insertion site and metabolic load on the environmental fitness of a genetically-modified Pseudomonas fluorescens isolate. Appl. Environ. Microbiol. 64: 2634–2638.

    CAS  Google Scholar 

  • De Lorenzo, V, Herrero M, Jakubzik U & Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative Eubacteria. J. Bacteriol. 172: 6568–6572.

    PubMed  CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM & Schippers B (1994) Suppression of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci. Technol. 4: 279–288.

    Article  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, Van Elsas JD & Van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67: 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Engelen B, Meinken K, von Wintzintgerode F, Heuer H, Malkomes HP & Backhaus H (1998) Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl. Environ. Microbiol. 64: 2814–2821.

    PubMed  CAS  Google Scholar 

  • Fantroussi ES, Verschuere L, Verstraete W & Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S ribosomal-RNA gene fingerprints and.624 community-level physiological profiles. Appl. Environ. Microbiol. 65: 982–988.

    PubMed  Google Scholar 

  • Ferguson A (1980) Biochemical Systematics and Evolution. Blackie, Glasgow, UK.

    Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazarri A, Defago G, Bonfante P & Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl. Environ. Microbiol. 67: 1851–1864.

    Article  PubMed  CAS  Google Scholar 

  • Glandorf DCM, Brand I, Bakker PAHM & Schippers B (1992) Stability of rifampin resistance as a marker for root colonization studies of Pseudomonas putida in the field. Plant Soil 147: 135–142.

    Article  CAS  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PAHM & LC van Loon (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field grown wheat. Appl. Environ. Microbiol. 67: 3371–3378.

    Article  PubMed  CAS  Google Scholar 

  • Harrison AF, Latter PM & Walton DWH (1988) ITE Symposium No. 24. Cotton strip assay: an index of decomposition in soils. Institute of terrestrial Ecology, Cumbria, UK.

    Google Scholar 

  • Ibekwi AM, Papiernik SK, Gan J, Yates SR, Yang CH & Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl. Environ. Microbiol. 67: 3245–3257.

    Article  Google Scholar 

  • King EO, Ward MK & Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301–307.

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Gerards S & Woldendorp J (1997) Detection and characterization of fungal infections of Ammophila arenaria (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl. Environ. Microbiol. 63: 3858–3865.

    PubMed  CAS  Google Scholar 

  • Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM & Thomashow LS (1998) A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 180: 2541–2548.

    PubMed  CAS  Google Scholar 

  • Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Naseby DC & Lynch JM (1998) Impact of wild type and genetically-modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol. Ecol. 7: 617–625.

    Article  CAS  Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E & Défago G (1997) Influence of the biocontrol strain Pseudomonas fluorescens CHAO and its antibiotic overproducing derivative on the diversity of resident root colonising pseudomonads. FEMS Microb. Ecol. 23: 341–352.

    Article  CAS  Google Scholar 

  • Raaijmakers JM & Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol. Plant-Microbe Interact. 11: 144–152.

    CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MMP, van der Sluis I, Schippers B & Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85: 1075–1081.

    Google Scholar 

  • Robleto EA, Borneman J & Triplett EW (1998) Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture-independent perspective. Appl. Environ. Microbiol. 64: 5020–5022.

    PubMed  CAS  Google Scholar 

  • Short KA, Seidler RJ & Olsen RH (1990) Survival and degradative capacity of Pseudomonas putida induced or constitutively expressing plasmid-mediated degradation of 2,4-dichlorophenoxyacetate (TFD) in soil. Can. J. Microbiol. 36: 821–826.

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P & Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23: 249–261.

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD & Wernars K (1999) Analysis of fungal diversity in soil by sequencing of cloned PCR amplified 18S rDNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65: 2614–2621.

    PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Gommans S, Van den Broek J, Van Mil S & Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67: 2284–2291.

    Article  PubMed  CAS  Google Scholar 

  • Stienstra AW, Klein Gunnewiek P & Laanbroek HJ (1994) Repression of nitrification in soils under a climax grassland vegetation. FEMS Microb. Ecol. 14: 45–52.

    Article  CAS  Google Scholar 

  • Thomashow LS & Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeu-mannomyces graminis var. tritici. J. Bacteriol. 170: 3499–3508.

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF & Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908–912.

    PubMed  CAS  Google Scholar 

  • Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RE & Regal PJ (1989) The planned introduction of genetically-modified organisms: ecological considerations and recommendations. Ecology 70: 298–315.

    Article  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA & Ovreas L (1998) Novel techniques for analyzing microbial diversity in natural and perturbed environments. J. Biotechnol. 64: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (1998) Biotechnology as a means to improve biological control of plant diseases. Med. Fac. Landbouww. Univ. Gent. 63/4b: 1657–1666.

    Google Scholar 

  • Wang ZM, Crawford DL, Magnuson TS, Bleakley BH & Hertel G (1991) Effects of bacterial lignin peroxidase on organic-carbon mineralization in soil, using recombinant Streptomyces strains. Can. J. Microbiol. 37: 287–294.

    Article  CAS  Google Scholar 

  • Weller DM, Zhang BX & RJ Cook (1985) Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Dis. 69: 710–713.

    Google Scholar 

  • Weller DM, Howie WJ & Cook RJ (1988) Relationship between in vitro inhibition of Gauemannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78: 1094–1100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A.H.M. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, P.A., Glandorf, D.C., Viebahn, M. et al. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81, 617–624 (2002). https://doi.org/10.1023/A:1020526126283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020526126283

Keywords

Navigation