Skip to main content
Log in

PepT1 mRNA Expression Is Induced by Starvation and Its Level Correlates with Absorptive Transport of Cefadroxil Longitudinally in the Rat Intestine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To establish how closely intestinal transport activity for beta-lactam antibiotics is correlated with PepT1 expression, absolute expression level of PepT1 mRNA and transport activity were determined longitudinally in the small intestine of fed and starved rats.

Methods. For evaluation of absolute expression levels of PepT1 mRNA, quantitative RT-PCR by LightCycler® was used. The transport function was determined by quantifying the absorptive transport of cefadroxil across intestinal tissue sheets in a Ussing chamber.

Results. PepT1 mRNA expression was highest at the lower region and lowest at the upper region in the fed rats. The value of PepT1 was about 1/5∼1/6 of that of GAPDH. The expression level in the starved rats was increased in all segments, but more profoundly in the upper region. Cefadroxil transport across intestinal tissue was higher in the lower region and lower in the upper region in fed rats, and increased in the upper region in starved rats. An excellent correlation was observed between expression levels and the permeability coefficients (r 2= 0.859, p < 0.05).

Conclusions. The intestinal transport of cefadroxil is directly proportional to PepT1 expression, suggesting that the PepT1 expression level in the rat small intestine is the major determinant of the absorption of peptide-like compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Tsuji and I. Tamai. Carrier-mediated intestinal transport of drugs. Pharm.Res. 13:963-977 (1996).

    Google Scholar 

  2. Y. J. Fei, Y. Kanai, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, and M. A. Hediger. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563-566 (1994).

    Google Scholar 

  3. R. Liang, Y. J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han, T. L. Yang-Feng, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J.Biol.Chem. 270: 6456-6463 (1995).

    Google Scholar 

  4. H. Saito, M. Okuda, T. Terada, S. Sasaki, and K. Inui. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J.Pharmacol.Exp.Ther. 275:1631-1637 (1995).

    Google Scholar 

  5. K. Miyamoto, T. Shiraga, K. Morita, H. Yamamoto, H. Haga, Y. Taketani, I. Tamai, Y. Sai, A. Tsuji, and E. Takeda. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim.Biophys.Acta 1305:34-38 (1996).

    Google Scholar 

  6. Y. J. Fei, M. Sugawara, J. C. Liu, H. W. Li, V. Ganapathy, M. E. Ganapathy, and F. H. Leibach. cDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PEPT1. Biochim.Biophys.Acta 1492:145-154 (2000).

    Google Scholar 

  7. I. Tamai, N. Tomizawa, A. Kadowaki, T. Terasaki, K. Nakayama, H. Higashida, and A. Tsuji. Functional expression of intestinal dipeptide/beta-lactam antibiotic transporter in Xenopus laevis oocytes. Biochem.Pharmacol. 48:881-888 (1994).

    Google Scholar 

  8. T. Terada, H. Saito, M. Mukai, and K. Inui. Characterization of stably transfected kidney epithelial cell line expressing rat H+/peptide cotransporter PEPT1: localization of PEPT1 and transport of beta-lactam antibiotics. J.Pharmacol.Exp.Ther. 281:1415-1421 (1997).

    Google Scholar 

  9. I. Tamai, N. Tomizawa, T. Takeuchi, K. Nakayama, H. Higashida, and A. Tsuji. Functional expression of transporter for beta-lactam antibiotics and dipeptides in Xenopus laevis oocytes injected with messenger RNA from human, rat and rabbit small intestines. J.Pharmacol.Exp.Ther. 273:26-31 (1995).

    Google Scholar 

  10. I. Tamai, T. Nakanishi, K. Hayashi, T. Terao, Y. Sai, T. Shiraga, K. Miyamoto, E. Takeda, H. Higashida, and A. Tsuji. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine. J.Pharm.Pharmacol. 49:796-801 (1997).

    Google Scholar 

  11. X. Y. Chu, G. P. Sanchez-Castano, K. Higaki, D. M. Oh, C. P. Hsu, and G. L. Amidon. Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter. J.Pharmacol.Exp.Ther. 299:575-582 (2001).

    Google Scholar 

  12. R. H. Erickson and J. R. Gum, Jr., M. M. Lindstrom, D. McKean, and Y. S. Kim. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem.Biophys.Res.Commun. 216:249-257 (1995).

    Google Scholar 

  13. T. Shiraga, K. Miyamoto, H. Tanaka, H. Yamamoto, Y. Taketani, K. Morita, I. Tamai, A. Tsuji, and E. Takeda. Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/peptide transporter PepT1. Gastroenterology 116:354-362 (1999).

    Google Scholar 

  14. H. Ogihara, T. Suzuki, Y. Nagamachi, K. Inui, and K. Takata. Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem.J. 31:169-174 (1999).

    Google Scholar 

  15. H. Tanaka, K. I. Miyamoto, K. Morita, H. Haga, H. Segawa, T. Shiraga, A. Fujioka, T. Kouda, Y. Taketani, S. Hisano, Y. Fukui, K. Kitagawa, and E. Takeda. Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracilinduced injury. Gastroenterology 114:714-723 (1998).

    Google Scholar 

  16. K. Naruhashi, M. Nadai, M. Nakao, N. Suzuki, T. Nabeshima, and T. Hasegawa. Changes in absorptive function of rat intestine injured by methotrexate. Clin.Exp.Pharmacol.Physiol. 27:980-986 (2000).

    Google Scholar 

  17. T. Fujita, Y. Majikawa, S. Umehisa, N. Okada, A. Yamamoto, V. Ganapathy, and F. H. Leibach. sigma Receptor ligand-induced up-regulation of the H+/peptide transporter PEPT1 in the human intestinal cell line Caco-2. Biochem.Biophys.Res.Commun. 261:242-246 (1999).

    Google Scholar 

  18. M. Thamotharan, S. Z. Bawani, X. Zhou, and S. A. Adibi. Hormonal regulation of oligopeptide transporter pept-1 in a human intestinal cell line. Am.J.Physiol. 276:C821-826 (1999).

    Google Scholar 

  19. H. Ogihara, H. Saito, B. C. Shin, T. Terado, S. Takenoshita, Y. Nagamachi, K. Inui, and K. Takata. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem.Biophys.Res.Commun. 220:848-852 (1996).

    Google Scholar 

  20. Y. Sai, I. Tamai, H. Sumikawa, K. Hayashi, T. Nakanishi, O. Amano, M. Numata, S. Iseki, and A. Tsuji. Immunolocalization and pharmacological relevance of oligopeptide transporter PepT1 in intestinal absorption of beta-lactam antibiotics. FEBS Lett. 392:25-29 (1996).

    Google Scholar 

  21. C. T. Wittwer, K. M. Ririe, R. V. Andrew, D. A. David, R. A. Gundry, and U. J. Balis. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22:176-181 (1997).

    Google Scholar 

  22. K. Naruhashi, I. Tamai, N. Inoue, H. Muraoka, Y. Sai, N. Suzuki, and A. Tsuji. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob.Agents Chemother. 46:344-349 (2002).

    Google Scholar 

  23. Z. Dische and E. Borenfreund. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J.Biol.Chem. 192:583-587 (1951).

    Google Scholar 

  24. T. Sawamoto, S. Haruta, Y. Kurosaki, K. Higaki, and T. Kimura. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J.Pharm.Pharmacol. 49:450-457 (1997).

    Google Scholar 

  25. C. Y. Yang, A. H. Dantzig, and C. Pidgeon. Intestinal peptide transport systems and oral drug availability. Pharm.Res. 16:1331-1343 (1999).

    Google Scholar 

  26. T. Terada, K. Sawada, H. Saito, Y. Hashimoto, and K. Inui. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am.J.Physiol. 276:G1435-G1441 (1999).

    Google Scholar 

  27. M. Irie, T. Terada, K. Sawada, H. Saito, and K. Inui. Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in Caco-2 cells. J.Pharmacol.Exp.Ther. 298:711-717 (2001).

    Google Scholar 

  28. Y. Tomita, M. Takano, M. Yasuhara, R. Hori, and K. Inui. Transport of oral cephalosporins by the H+/dipeptide cotransporter and distribution of the transport activity in isolated rabbit intestinal epithelial cells. J.Pharmacol.Exp.Ther. 272:63-69 (1995).

    Google Scholar 

  29. M. Thamotharan, S. Z. Bawani, X. Zhou, and S. A. Adibi. Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism 48:681-684 (1999).

    Google Scholar 

  30. H. Maekawa, Y. Takagishi, K. Iwamoto, Y. Doi, and T. Ogura. Cephalexin preparation with prolonged activity. Jpn.J.Antibiot. 30:631-638 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naruhashi, K., Sai, Y., Tamai, I. et al. PepT1 mRNA Expression Is Induced by Starvation and Its Level Correlates with Absorptive Transport of Cefadroxil Longitudinally in the Rat Intestine. Pharm Res 19, 1417–1423 (2002). https://doi.org/10.1023/A:1020436028194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020436028194

Navigation