Skip to main content
Log in

Clinical Physiological Significance of Intraoperative Evoked Potential Monitoring

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Modern approaches to intraoperative evoked potential (EP) monitoring in cerebral and spinal cord pathology are reviewed. The criteria of physiological permissibility of neurosurgery based on EP data and the possibilities of studying the neurophysiological mechanisms of somatosensory, auditory, and visual perception in unconscious patients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chen, T.C., Rabb, C., and Apuzzo, M.L., Complex Technical Methodologies and Their Applications in the Surgery of Intracranial Meningiomas, Neurosurg. Clin. N. Am., 1994, vol. 5, no. 2, p. 261.

    Google Scholar 

  2. Ziyal, I.M., Sekhar, L.N., Salas, E., and Olan, W.J., Combined Supra/Ifratentorial Transsinus Approach to Large Pineal Region Tumors, J. Neurosurg., 1998, vol. 88, no. 6, p. 1050.

    Google Scholar 

  3. Ostreiko, L.M., Khil'ko, V.A., Lytaev, S.A., Monitoring of Acoustic Brainstem Evoked Potentials in Posterior Fossa Tumor Surgery, Vestn. Khir., 1999, no. 5, p. 38.

    Google Scholar 

  4. Ganslandt, O., Steinmeier, R., Kober, H.,et al., Magnetic Source Imaging Combined With Image-Guided Frameless Stereotaxy: A New Method in Surgery Around the Motor Strip, Neurosurgery, 1997, vol. 41, no. 3, p. 621.

    Google Scholar 

  5. Lumenta, G.B., Gumprecht, H.K., Leonardi, M.A., et al., Three-Dimensional Computer-Assisted Stereotacticguided Microneurosurgery Combined with Cortical Mapping of the Motor Area by Direct Electrostimulation, Minim. Invasive Neurosurg., 1997, vol. 40, no. 2, p. 50.

    Google Scholar 

  6. Jewet, D.L., Martin, W.H., Sininger, G.S., et al., The 3-Channel Lissajous' Trajectory of the Auditory Brain-Stem Response, EEG Clin. Neurophysiol., 1987, vol. 68, no. 5, p. 321.

    Google Scholar 

  7. Scherg, M. and Von Cramon, D., Evoked Dipole Source Potentials of the Human Auditory Cortex, EEG Clin. Neurophysiol., 1986, vol. 65, no. 5, p.344.

    Google Scholar 

  8. Lytaev, S.A. and Shostak, V.I., Methods of Analysis of Evoked Potentials in Clinic and Psychophysiology, Usp. Fiziol. Nauk, 1995, vol. 26, no. 3, p. 95.

    Google Scholar 

  9. Shchekut'ev, G.A. and Koptelov, Yu.M., Dipole Localization Method in the Analysis of Acoustic Brainstem Evoked Potential, Zh. Vyssh. Nervn. Deyat., 1992, vol. 42, issue 1, p. 176.

    Google Scholar 

  10. Evoked Potentials in Clinical Testing, Halliday, A.M., Ed., London: Churchill Livingstone, 1982.

    Google Scholar 

  11. Walter, D.O., A Posteriori “Wiener Filtering” of Average Evoked Responses, EEG Clin. Neurophysiol., 1969, suppl. 27, p. 61.

    Google Scholar 

  12. Nuwer, J.M. and Nuwer, M.R., Neurophysiologic Surgical Monitoring Staffing Patterns in the USA, EEG Clin. Neurophysiol., 1997, vol. 103, no. 6, p. 616.

    Google Scholar 

  13. Wagner, W., The Value of Differential Recording of Subcortical Somatosensory Evoked Potentials (SEP) in Nweurosurgery, Zentralbl. Neurochir., 1996, vol. 57, no.2, p. 89.

    Google Scholar 

  14. Gedzich, C., Taniguchi, M., Schafer, S., and Schramm, J., Somatosensory Evoked Potential Phase Reversal and Direct MOtor Cortex Stimulation during Surgery in and around the Central Region, Neurosurgery, 1996, vol. 38, no. 5, p. 962.

    Google Scholar 

  15. Shchekut'ev, G.A., Lubnin, A.Yu., and Baranov, O.A., Monitoring of Somatosensory Evoked Potentials during Cerebral Blood Vessel Surgery, Zh. Vopr. Neirokhir., 1991, no. 2, p. 11.

    Google Scholar 

  16. Shchekut'ev, G.A., Lubnin, A.Yu., Barkalaya, D.E., and Sogomonyan, S.A., Monitoring of Short-Latency Evoked Potentials during Brainstem Surgery, Zh. Vopr. Neirokhir., 1994, no. 4, p. 48.

    Google Scholar 

  17. Palma, V. and Guadagnino, M., Electrophysiological Monitoring of Neural Functions during Neurosurgery, Acta Neurol. (Napoli), 1990, vol. 12, no. 6, p. 481.

    Google Scholar 

  18. Sclabassi, R.J., Kalia, K.K., Sekhar, L., and Jannetta, P.J., Assessing Brain Stem Functions, Neurosurg. Clin. N. Am., 1993, vol. 4, no. 3, p. 415.

    Google Scholar 

  19. American Electroencephalographic Society: Guidelines for Clinical Evoked Potentials Studies, J. Clin. Neurophysiol., 1984, vol. 1, no. 1, p. 3.

  20. John, E.R., Chabot, R.J., Prichep, L.S., et al., Real-Time Intraoperative Monitoring during Neurosurgical and Neuroradiological Procedures, J. Clin. Neurophysiol., 1989, vol. 6, no. 2, p. 125.

    Google Scholar 

  21. Josiassen, R.C., Shagass, C., Roemer, R.A., et al., Early Cognitive Components of Somatosensory Event-Related Potentials, Int. J. Psychophysiol., 1990, vol. 9, no. 2, p.139.

    Google Scholar 

  22. Celesia, G.G. and Gastone, G., Somatosensory Evoked Potentials Recorded Directly from Human Thalamus and Sm1 Cortical Area, Arch. Neurol., 1979, vol. 36, no.7, p. 399.

    Google Scholar 

  23. Wagner, W., Peghini-Halbig, L., Maurer, J.C., et al., Intraoperative SEP Monitoring in Neurosurgery around the Brain Stem and Cervical Spinal Cord: Differential Recording of Subcortical Components, J. Neurosurg., 1994, vol. 81, no. 2, p. 213.

    Google Scholar 

  24. Mauguiere, F., Desmedt, J.E., and Courjon, J., Neural Generators of N18 and P14 Far-Field Somatosensory Evoked Potentials Studied in Patients with Lesion of Thalamus or Thalamocortical Radiations, EEG Clin. Neurophysiol., 1983, vol. 56, no. 4, p. 283.

    Google Scholar 

  25. Desmedt, J.E. and Cheron, G., Non-Cephalic Reference Recording of Early Somatosensory Potentials to Finger Stimulation in Adult or Aging Man: Differentiation of Widespread N18 and Contrlateral N20 from the Prerolandic P22 and N30 Components, EEG Clin. Neurophysiol., 1981, vol. 52, no. 6, p. 553.

    Google Scholar 

  26. Desmedt, J.E. and Tomberg, C., Mapping Early Somatosensory Evoked Potentials: Critical Evaluation of Control Condition Used for Titrating by Difference the Cognitive P30, P40, P100 and N140, EEG Clin. Neurophysiol., 1989, vol. 74, no. 5, p. 321.

    Google Scholar 

  27. Fukuda, M., Kameyama, S., Noguchi, R., and Tanaka, R., Intraoperative Monitoring for Functional Neurosurgery during Intravenous Anesthesia with Propofol, No. Shinkei Geka, 1997, vol. 25, no. 3, p. 231.

    Google Scholar 

  28. Deinsberger, W., Christophis, P., Jedicke, A., Heesen, M., and Beker, D.K., Somatosensory Evoked Potential Monitoring during Positioning of the Patient for Posterior Fossa Surgery in the Semisitting Position, Neurosurgery, 1998, vol. 43, no. 1, p. 36.

    Google Scholar 

  29. Friedman, W.A., Evoked Potentials Monitoring during Aneurysm Operation: Observations after Fifty Cases, Neurosurgery, 1987, vol. 20, no. 5, p. 678.

    Google Scholar 

  30. Skirboll, S. and Newell, D.W., Noninvasive Physiologic Evaluation of the Aneurysm Patient, Neurosurg. Clin. N. Am., 1998, vol. 9, no. 3, p. 463.

    Google Scholar 

  31. Milhorat, T.H., Kotzen, R.M., Capocelli, A.L., Jr., et al., Intraoperative Improvement of Somatosensory Evoked Potentials and Local Spinal Cord Blood Flow in Patients with Syringomyelia, J. Neurosurg. Anesthesiol., 1996, vol. 8, no. 3, p. 208.

    Google Scholar 

  32. Pechstein, U., Zentner, J., Van Roost, D., and Schramm, J., Surgical management of Brain-Stem Cavernomas, Neurosurg. Rev., 1997, vol. 20, no. 2, p. 87.

    Google Scholar 

  33. Sako, K., Nakai, H., Kawata, Y., et al., TemporaryArterial Occlusion during Anterior Communicating or Anterior Cerebral Artery Aneurysm Operation under Tibial Nerve Somatosensory Evoked Potential Monitoring, Surg. Neurol., 1998, vol. 49, no. 3, p. 316.

    Google Scholar 

  34. Picton, T.W., Human Event-Related Potentials: Handbook of Electroencephalography and Clinical Neurophysiology, Amsterdam: Elsevier, 1988, vol. 3, revised ser.

    Google Scholar 

  35. Picton, T.W., Hillyard, S.A., Krausz, H.I., et al., Human Auditory Evoked Potentials: 1. Evaluation of Components, EEG Clin. Neurophysiol., 1974, vol. 36, no. 2, p.179.

    Google Scholar 

  36. Moore, J.K., The Human Auditory Brain Stem as a Generator of Auditory Evoked Potentials, Hear. Res., 1987, vol. 29, no. 1, p. 33.

    Google Scholar 

  37. Matthies, C. and Samii, M., Management of Vestibular Schwannomas (Acoustic Neuromas): The Value of Neurophysiology for Intraoperative Monitoring of Auditory Function in 200 Cases, Neurosurgery, 1997, vol. 40, no. 3, p. 459.

    Google Scholar 

  38. Matthies, C. and Samii, M., Management of Vestibular Schwannomas (Acoustic Neuromas): The Value of Neurophysiology for Evaluation and Prediction of Auditory Function in 420 Cases, Neurosurgery, 1997, vol. 40, no. 5, p. 919.

    Google Scholar 

  39. Chiara, Y., Michalet, G., Fischer, C., et al., Value of Early Auditory Evoked Potentials after Neurosurgery, Agressologie, 1991, vol. 32, nos. 6-7, p. 329.

    Google Scholar 

  40. Pantev, C., Hoke, M., Lehnertz, K., et al., Tonotopic Organization of Human Auditory Cortex Revealed by Transient Auditory Evoked Magnetic Fields, EEG Clin. Neurophysiol., 1988, vol. 69, no. 2, p. 160.

    Google Scholar 

  41. Pantev, C., Hoke, M., Lehnertz, K., et al., Neuromagnetic Evidence of an Amplitopic Organization of the Human Auditory Cortex, EEG Clin. Neurophysiol., 1989, vol. 72, no. 3, p. 225.

    Google Scholar 

  42. Woods, D.L., Clayworth, C.C., Knight, R.T., Simpson, G.V., and Naeser, M.A., Generators of Middle-and Long-Latency Auditory Evoked Potentials: Implications from Studiesof Ptients with Bitemporal Lesions, EEG Clin. Neurophysiol., 1987, vol. 68, no. 2, p. 132.

    Google Scholar 

  43. Grandory, F., Dipole Localization Methods (DLM) and Auditory Evoked Brainstem Potentials, Rev. Laryngol., 1984, vol. 105, suppl. 2, p. 171.

    Google Scholar 

  44. Koptelov, Yu.M. and Gnezditskii, V.V., Analysis of Scalp Potential Fields and Three-Dimensional Localization of Equivalent Sources of Epileptic Activity in the Human Brain, Zh. Nevropatol. Psikhiatr., 1989, vol. 89, no. 6, p. 11.

    Google Scholar 

  45. Snyders, A.Z., Dipole Source Localization in the Study of EP Generators: A Critique, EEG Clin. Neurophysiol., 1991, vol. 80, no. 4, p. 321.

    Google Scholar 

  46. Pratt, H., Har'el, Z., and Golos, E., Geometrical Analysis of Human Three-Channel Lissajous' Trajectory of Auditory Brainstem Evoked Potentials, EEG Clin. Neurophysiol., 1984, vol. 58, no. 1, p. 83.

    Google Scholar 

  47. Paquereau, J., Ingrand, P., and Marilland, A., Wave 111 of Brainstem Auditory Evoked Potentials Analysed both with 3-Channel Lissajous' Trajectory and Dipole Localization Method, EEG Clin. Neurophysiol., 1991, vol. 80, no. 4, p. 298.

    Google Scholar 

  48. Deiber, M.P., Ibanez, V., Fischer, C., et al., Sequential Mapping Favours the Hypothesis of Distinct Generation for Na and Pa Middle Latency Auditory Evoked Potentials, EEG Clin. Neurophysiol., 1988, vol. 71, no. 3, p. 187.

    Google Scholar 

  49. Akabane, A., Saito, K., Suzuki, Y., Shibuya, M., and Sugita, K., Monitoring Visual Evoked Potentials during Retraction of the Canine Optic Nerve: Protective Effect of Unroofing the Optic Canal, J. Neurosurg., 1995, vol. 82, no. 2, p. 284.

    Google Scholar 

  50. Zaaroor, M., Pratt, H., Feinsod, M., and Schacham, S.E., Real-Time Monitoring of Visual Evoked Potentials, Isr. J. Med. Sci., 1993, vol. 29, no. 1, p. 17.

    Google Scholar 

  51. Herdmann, J., Deletis, V., Edmonds, H.L., Jr., and Morota, N., Spinal Cord and Nerve Root Monitoring in Spine Surgery and Related Procedures, Spine, 1996, vol. 21, no. 7, p. 879.

    Google Scholar 

  52. Jones, S.J., Harrison, R., Koh, K.F., Mendoza, N., and Crockard, H.A., Motor Evoked Potential Monitoring during Spinal Surgery: Responses of Distal Limb Muscles to Transcranial Cortical Stimulation with Pulse Trains, EEG Clin. Neurophysiol., 1996, vol. 100, no. 5, p. 375.

    Google Scholar 

  53. Livshits, A.V., Sokolova, A.A., Margishvili, G.M., and Baskov, A.V., Dynamics of Changes in Somatosensory Evoked Potentials in Spine and Spinal Cord Traumas after Meningomyeloradiculolysis, Zh. Vopr. Neirokhir., 1995, no. 1, p. 26.

    Google Scholar 

  54. Zileli, M., Coskun, E., Ozdamar, N., et al., Surgery of Intramedullary Spinal Cord Tumors, Eur. Spine J., 1996, vol. 5, no. 4, p. 243.

    Google Scholar 

  55. Balzer, J.R., Rose, R.D., Welch, W.C., et al., Simultaneous Somatosensory Evoked Potential and Electromyographic Recordings during Lumbosacral Decompression and Instrumentation, Neurosurgery, 1998, vol. 42, no. 6, p. 1318.

    Google Scholar 

  56. May, D.M., Jones, S.J., and Crockard, H.A., Somatosensory Evoked Potential Monitoring in Cervical Surgery: Identification of Pre-and Intraoperative Risk Factors Associated with Neurological Deterioration, J. Neurosurg., 1996, vol. 85, no. 4, p. 566.

    Google Scholar 

  57. Oberle, J.W., Antoniadis, G., Rath, S.A., and Richter, H.P., Value of Nerve Action Potentials in the Surgical Management of Traumatic Nerve Lesions, Neurosurgery, 1997, vol. 41, no. 6, p. 1337.

    Google Scholar 

  58. Pechstein, U., Cedzich, C., Nadstawek, J., and Schramm, J., Transcranial High Frequency Repetitive Electrical Stimulation for Recording Myogenic Motor Evoked Potentials with the Patient under General Anesthesia, Neurosurgery, 1996, vol. 39, no. 2, p. 335.

    Google Scholar 

  59. Pechstein, U., Nadstawek, J., Zentner, J., and Schramm, J., Isoflurane Plus Nitrous Oxide Versus Propofol for Recording of Motor Evoked Potentials after High Frequency Repetitive Electrical Stimulation, EEG Clin. Neurophysiol., 1998, vol. 108, no. 2, p. 175.

    Google Scholar 

  60. Ubags, L.H., Kalkman, C.J., and Been, H.D., Influence of Isoflurane on Myogenic Motor Evoked Potentials to Single and Multiple Transcranial Stimuli during Nitrous Oxide/Opioid Anesthesia, Neurosurgery, 1998, vol. 43, no. 1, p. 90.

    Google Scholar 

  61. Gokaslan, Z.L., Samudrala, S., Deletis, V., Wildrick, D.M., and Cooper, P.R., Intraoperative Monitoring of Spinal Cord Function Using Motor Evoked Potentials via Transcutaneous Epidural Electrode during Anterior Cervical Spinal Surgery, J. Spinal Disord., 1997, vol. 10, no. 4, p. 299.

    Google Scholar 

  62. Morota, N., Deletis, V., Constantini, S., et al., The Role of Motor Evoked Potentials during Surgery for Intramedullary Spinal Cord Tumors, Neurosurgery, 1997, vol. 41, no. 6, p. 1327.

    Google Scholar 

  63. Kothbauer, K., Deletis, V., and Epstein, F.J., Intraoperative Spinal Cord Monitoring for Intramedullary Surgery: An Essential Adjunct, Pediatr. Neurosurg., 1997, vol. 26, no. 5, p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khil'ko, V.A., Lytaev, S.A. & Ostreiko, L.M. Clinical Physiological Significance of Intraoperative Evoked Potential Monitoring. Human Physiology 28, 619–626 (2002). https://doi.org/10.1023/A:1020295322474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020295322474

Keywords

Navigation