Skip to main content
Log in

Understanding the Stepwise Synthesis of Glycolipids

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycolipid expression is highly regulated during development and differeniation. The control relies mainly on transcriptional modulation of key glycosyltransferases acting at the branching points of the pathway of biosynthesis. Transferases are Golgi residents that depend on N-glycosylation and oligosaccharide processing for proper folding in the endoplasmic reticulum. The N-terminal domain bears information for their transport to the Golgi, retention in the organelle and differential concentration in sub-Golgi compartments. In the Golgi, some transferases associate forming functional multienzyme complexes. It is envisaged that the machinery for synthesis in the Golgi complex, and its dynamics, constitute a potential target for fine tuning of the control of glycolipid expression according to cell demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rösner, H. 1994. Ganglioside and brain development. Pages 19-36, In Glycobiology and the Brain, Pergamon Press, Oxford-New York.

    Google Scholar 

  2. Panzetta, P., Maccioni, H. J. F., and Caputto, R. 1980. Synthesis of retinal gangliosides during chick embryonic development. J. Neurochem. 35:100-108.

    Google Scholar 

  3. Yu, R. K., Macala, L. J., Taki, T., Weinfield, H. M., and Yu, F. S. 1988. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50:1825-1829.

    Google Scholar 

  4. Daniotti, J. L., Rosales Fritz, V. M., Kunda, P., Nishi, T., and Maccioni, H. J. 1997. Cloning, characterization and developmental expression of alpha2,8 sialyltransferase (GD3 synthase, ST8Sia I) gene in chick brain and retina. Int. J. Dev. Neurosci. 15:767-776.

    Google Scholar 

  5. Coulombre, A. J. 1955. Correlation of structural and biochemical changes in the developing retina of the chick. Am. J. Anat. 26:153-190.

    Google Scholar 

  6. Daniotti, J. L., Landa, C. A. and Maccioni, H. J. F. 1994. Regulation of ganglioside composition and synthesis is different in developing chick retinal pigment epithelium and neural retina. J. Neurochem. 62:1131-1136.

    Google Scholar 

  7. Daniotti, J. L., Landa, C. A., Rosner, H., and Maccioni, H. J. F. 1991 Dec. GD3 prevalence in adult rat retina correlates with the maintenance of a high GD3-/GM2-synthase activity ratio throughout development. J. Neurochem. 57:2054-2058.

    Google Scholar 

  8. Bieberich, E. and Yu, R. K. 1999. Multi-enzyme kinetic analysis of glycolipid biosynthesis. Biochim. Biophys. Acta, 1432:113-124.

    Google Scholar 

  9. Lloyd, K. O. and Furukawa, K. 1998. Biosynthesis and functions of gangliosides: recent advances. Glycoconj. J. 15:627-636.

    Google Scholar 

  10. Cumar, F. A., Brady, R. O., Kolodny, E. H., McFarland, V. W., and Mora, P. T. 1970. Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines. Proc. Natl. Acad. Sci. U.S.A. 67:757-764.

    Google Scholar 

  11. Hakomori, S. 1981. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50:733-764.

    Google Scholar 

  12. Nagai, Y., Nakaishi, H., and Sanai, Y. 1986. Gene transfer as a novel approach to the gene-controlled mechanism of the cellular expression of glycosphingolipids. Chem. Phys. Lipids 42:91-103.

    Google Scholar 

  13. Sung, C. C., Pearl, D. K., Coons, S. W., Scheithauer, B. W., Johnson, P. C., and Yates, A. J. 1994. Gangliosides as diagnostic markers of human astrocytomas and primitive neuroectodermal tumors. Cancer 74:3010-3022.

    Google Scholar 

  14. Martina, J. A. and Maccioni, H. J. 1996. UDP-sugar pyrophosphatase of rat retina: Subcellular localization and topography. J. Neurosci. Res. 46:485-491.

    Google Scholar 

  15. Martina, J. A., Daniotti, J. L., and Maccioni, H. J. F. 1995. A UDP-GalNAc pyrophosphatase activity is developmentally regulated in the rat retina. J. Neurochem. 64:1274-1280.

    Google Scholar 

  16. MaxzÚd, M. K., Daniotti, J. L., and Maccioni, H. J. F. 1995. Functional coupling of glycosyltransfer steps for synthesis of gangliosides in Golgi membranes from neural retina cells. J. Biol. Chem. 270:20207-20214.

    Google Scholar 

  17. Scheideler, M. A. and Dawson, G. 1986. Direct demonstration of the activation of UDP-N-acetylgalactosamine: [GM3]Nacetylgalactosaminyltransferase by cyclic AMP. J. Neurochem. 46:1639-1643.

    Google Scholar 

  18. Takamiya, K., Yamamoto, A., Yamashiro, S., Furukawa, K., Haraguchi, M., Okada, M., Ikeda, T., Shiku, H., and Furukawa, K. 1995. T cell receptor mediated stimulation of mouse thymocytes induces up-regulation of the GM2/GD2 synthase gene. FEBS Lett. 358:79-83.

    Google Scholar 

  19. Gu, X., Preuss, U., Gu, T., and Yu, R. K. 1995. Regulation of sialyltransferase activities by phosphorylation and dephosphorylation. J. Neurochem. 64:2295-2302.

    Google Scholar 

  20. Bieberich, E., Freischutz, B., Liour, S. S., and Yu, R. K. 1998. Regulation of ganglioside metabolism by phosphorylation and dephosphorylation. J. Neurochem. 71:972-979.

    Google Scholar 

  21. Maccioni, H. J. F., Daniotti, J. L., and Martina, J. A. 1999. Organisation of ganglioside synthesis in the Golgi apparatus. Biochim. Biophys. Acta 1437:101-118.

    Google Scholar 

  22. Yu, R. K. and Bieberich, E. 2001. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Mol. Cell. Endocrinol. 177:19-24.

    Google Scholar 

  23. Futerman, A. H. and Pagano, R. E. 1991. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem. J. 280:295-302.

    Google Scholar 

  24. Sprong, H., Kruithof, B., Leijendekker, R., Slot, J. W., van Meer, G., and van der Sluijs, P. 1998. UDP-galactose: ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273:25880-25888.

    Google Scholar 

  25. Watanabe, R., Wu, K., Paul, P., Marks, D. L., Kobayashi, T., Pittelkow, M. R., and Pagano, R. E. 1998. Up-regulation of glucosylceramide synthase expression and activity during human keratinocyte differentiation. J. Biol. Chem. 273:9651-9655.

    Google Scholar 

  26. Colley, K. J. 1997. Golgi localization of glycosyltransferases: More questions than answers. Glycobiology 7:1-13.

    Google Scholar 

  27. Maxzud, M. K. and Maccioni, H. J. 2000. Glucosylceramide synthesized in vitro from endogenous ceramide is uncoupled from synthesis of lactosylceramide in Golgi membranes from chicken embryo neural retina cells. Neurochem. Res. 25:145-152.

    Google Scholar 

  28. Sprong, H., van der Sluijs, P., and van Meer, G. 2001. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2:504-513.

    Google Scholar 

  29. Helenius, J., Ng, D. T., Marolda, C. L., Walter, P., Valvano, M. A., and Aebi, M. 2002. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415:447-450.

    Google Scholar 

  30. Rothman J. E. 1994. Mechanisms of intracellular protein transport. Nature 372:55-63.

    Google Scholar 

  31. Pelham, H. R. and Rothman, J. E. 2000. The debate about trans-port in the Golgi-two sides of the same coin? Cell 102:713-719.

    Google Scholar 

  32. Trinchera, M., Pirovano, B., and Ghidoni, R. 1990. Sub-Golgi distribution in rat liver of CMP-NeuAc GM3 and CMP-NeuAc: GT1b 28 sialyltransferases and comparison with the distribution of the other glycosyltransferases activities involved in ganglioside biosynthesis. J. Biol. Chem. 265:18242-18247.

    Google Scholar 

  33. Trinchera M. and Ghidoni R. 1989. Two glycosphingolipid sialyltransferases are localized in different sub Golgi compartments in rat liver. J. Biol. Chem. 264:15766-15769.

    Google Scholar 

  34. Lannert, H., Gorgas, K., Meissner, I., Wieland, F. T., and Jeckel, D. 1998. Functional organization of the Golgi apparatus in glycosphingolipid biosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J. Biol. Chem. 273:2939-2946.

    Google Scholar 

  35. Mollenhauer, H. H., Morré, D. J., and Rowe, L. D. 1990. Alteration of intracellular traffic by monensin: Mechanism, specificity and relationship to toxicity. Biochim. Biophys. Acta 1031:225-246.

    Google Scholar 

  36. Miller-Prodraza, H. and Fishman, P. H. 1984. Effect of drugs and temperature on biosynthesis and transport of glycosphyngolipids in cultured neurotumor cells. Biochim. Biophys. Acta 804:44-51.

    Google Scholar 

  37. Nores, G. A. and Caputto, R. 1986. Regulation of ganglioside and sialoglycoprotein biosynthesis. Effect of drugs affecting membrane flow. Neurochem. Int. 8.

  38. Rosales Fritz, V. M., Maxzud, M. K. and Maccioni, H. J. 1996. GT3 synthesis in the proximal Golgi occurs in a compartment different from those for GD3 and GM3 synthesis. J. Neurochem. 67:1393-1400.

    Google Scholar 

  39. Donaldson J. G. and Klausner R. D. 1994. ARF: A key regulatory switch in membrane traffic and organelle structure. Curr. Opin. Cell Biol. 6:527-532.

    Google Scholar 

  40. Young, W. W., Jr., Lutz, M. S., Mills, S. E., and Lechler-Osborn, S. 1990. Use of brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block. Proc. Natl. Acad. Sci. U.S.A. 87:6838-6842.

    Google Scholar 

  41. van Echten, G., Iber, H., Stotz, H., Takatsuki, A., and Sandhoff, K. 1990. Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur. J. Cell Biol. 51:135-139.

    Google Scholar 

  42. Rosales Fritz, V. M. and Maccioni, H. J. F. 1995. Effects of brefeldin A on synthesis and intracellular transport of ganglioside GT3 by chick embryo retina cells. J. Neurochem. 65:1859-1864.

    Google Scholar 

  43. Giraudo, C. G., Rosales Fritz, V. M., and Maccioni, H. J. 1999. GA2/GM2/GD2 synthase localizes to the trans-golgi network of CHO-K1 cells. Biochem. J. 342 (Pt 3):633-640.

    Google Scholar 

  44. Li, J., Yen, T. Y., Allende, M. L., Joshi, R. K., Cai, J., Pierce, W. M., Jaskiewicz, E., Darling, D. S., Macher, B. A., and Young, W. W., Jr. 2000. Disulfide bonds of GM2 synthase homodimers. Antiparallel orientation of the catalytic domains. J. Biol. Chem. 275:41476-41486.

    Google Scholar 

  45. Daniotti, J. L., Martina, J. A., Giraudo, C. G., Zurita, A. R., and Maccioni, H. J. 2000. GM3 alpha2,8-sialyltransferase (GD3 synthase): Protein characterization and sub-golgi location in CHO-K1 cells. J. Neurochem. 74:1711-1720.

    Google Scholar 

  46. Haraguchi, M., Yamashiro, S., Furukawa, K., Takamiya, K., Shiku, H., and Furukawa, K. 1995. The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem. J. 312:273-280.

    Google Scholar 

  47. Martina, J. A., Daniotti, J. L., and Maccioni, H. J. 1998. Influence of N-glycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase. J. Biol. Chem. 273:3725-3731.

    Google Scholar 

  48. Martina, J. A., Daniotti, J. L., and Maccioni, H. J. 2000. GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochem. Res. 25:725-731.

    Google Scholar 

  49. Parodi, A. J. 1999. Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim. Biophys. Acta, 1426:287-295.

    Google Scholar 

  50. Aridor, M., Fish, K. N., Bannykh, S., Weissman, J., Roberts, T. H., Lippincott-Schwartz, J., and Balch, W. E. 2001. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152:213-229.

    Google Scholar 

  51. Giraudo, C. G., Daniotti, J. L., and Maccioni, H. J. 2001. Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A. 98:1625-1630.

    Google Scholar 

  52. Giraudo, G. C. and Maccioni, H. J. F. Glycolipid glycosyltransferase N-terminus plays a role in sorting and sub-Golgi location. XXXVII Reunión anual de la Sociedad Argentina de Investigación Bioquímica y Biología Molecular, C67.

  53. Fullekrug, J. and Nilsson, T. 1998. Protein sorting in the Golgi complex. Biochim. Biophys. Acta 1404:77-84.

    Google Scholar 

  54. Munro, S. 1998. Localization of proteins to the Golgi apparatus. Trends Cell. Biol. 8:11-15.

    Google Scholar 

  55. Roseman, S. 1970. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids 5:270-297.

    Google Scholar 

  56. Caputto, R., Maccioni, H. J. F., and Arce, A. 1974. Biosynthesis of brain gangliosides. Mol. Cell Biochem. 4:97-106.

    Google Scholar 

  57. Cole, N. B., Smith, C. L., Sciaky, N., Terasaki, M., Edidin, M., and Lippincott-Schwartz, J. 1996. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273:797-801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccioni, H.J.F., Giraudo, C.G. & Daniotti, J.L. Understanding the Stepwise Synthesis of Glycolipids. Neurochem Res 27, 629–636 (2002). https://doi.org/10.1023/A:1020271932760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020271932760

Navigation