Skip to main content
Log in

A dynamic model of the spatial spread of an infectious disease: the case of fox rabies in Illinois

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A spatially explicit computer model is developed to examine the dynamic spread of fox rabies across the state of Illinois and to evaluate possible disease control strategies. The ultimate concern is that the disease will spread from foxes to humans through the pet population.

Modeling the population dynamics of rabies in foxes requires comprehensive ecological and biological knowledge of the fox and pathogenesis of the rabies virus. Variables considered including population densities, fox biology, home ranges, dispersal rates, contact rates, and incubation periods, can greatly effect the spread of disease. Accurate reporting of these variables is paramount for realistic construction of a spatial model. The spatial modeling technique utilized is a grid-based approach that combines the relevant geographic condition of the Illinois landscape (typically described in a georeferenced database system) with a nonlinear dynamic model of the phenomena of interest in each cell, interactively connected to the other appropriate cells (usually adjacent ones).

The resulting spatial model graphically links data obtained from previous models, fox biology, rabies information and landscape parameters using various hierarchical scales and makes it possible to follow the emergent patterns and facilitates experimental stimulus/result data collection techniques. Results of the model indicate that the disease would likely spread among the native healthy fox population from East to West and would occur in epidemiological waves radiating from the point of introduction; becoming endemic across the State in about 15 years. Findings also include the realization that while current hunting pressures can potentially wipe out the fox in the State, some level of hunting pressure can be effectively utilized to help control the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Risser, J.R. Karr and R.T. Foreman, Landscape ecology: Directions and approaches, Illinois Natural History Survey special publication No. 2 (1984).

  2. R. Costanza, F.H. Sklar and M.L. White, BioScience 40 (1990) 91-107.

    Article  Google Scholar 

  3. F.H. Sklar and R. Costanza, in: Quantitative Methods in Landscape Ecology, eds. M.G. Turner and R. Gardner (Springer, New York, NY, 1991) pp. 239-288.

    Google Scholar 

  4. D.W. Goodall, The Hierarchical Approach to Model Building, The First International Congress of Ecology, Wageningen, Netherlands, Center for Agricultural Publishing and Documentation, 1974.

    Google Scholar 

  5. B. Acock and J.F. Reynolds, in: Process Modeling of Forest Growth Responses to Environmental Stress, eds. R.K. Dixon, R.S. Meldahl, G.A. Ruark and W.G. Warren (Timber Press, Portland, OR, 1990).

    Google Scholar 

  6. T. Maxwell, F. Villa and R. Costanza, The Spatial Modeling Environment (SME), Solomons, MD, International Institute for Ecological Economics, Center for Environmental Science, University of Maryland System (1999).

  7. R. Costanza and T. Maxwell, Ecological Modeling 58 (1991) 159-183.

    Article  Google Scholar 

  8. T. Maxwell and R. Costanza, in: Toward Sustainable Development: Concepts, Methods, and Policy, Vol. 58, eds. J. Van den Bergh and J. Van der Straaten (Island Press, Washington, DC, 1994) pp. 111-138.

    Google Scholar 

  9. T. Maxwell and R. Costanza, Special issue on advanced simulation methodologies, International Journal of Computer Simulation 5 (1995) 247-262.

    Google Scholar 

  10. SME, http://kabir.cbl.umces.edu/SME3/index.html, International Institute for Ecological Economics, Center for Environmental Science, University of Maryland System (1999).

  11. J.D. Westervelt, B.M. Hannon, P. Sheikh, A. Cheng, C. Rubin, B. Dvorak, A. Nugtern, L. Gildensoph, H. Mitasova, E. Lambert, L. Iverson, K. Pabich and M.R.N. Shapiro, Dynamic, spatial, ecological modeling: A demonstrated simulation of the Sage Grouse habitat at the Yakima Training Center, TR-95/18, US Army, Corps of Engineers, CERL (1995).

  12. J.D. Westervelt, B.M. Hannon, S. Levi and S.J. Harper, A dynamic simulation model of the desert tortoise (Gopherus agassizii) habitat in the Central Mojave Desert, TR-97/102, US Army, Corps of Engineers, CERL (1997).

  13. A.M. Trame, S.J. Harper, J. Aycrigg and J. Westervelt, The Fort Hood Avian simulation model: A dynamic model of ecological influences on two endangered species, TR-97/88, US Army, Corps of Engineers, CERL (1997).

  14. A.S. Benenson, The Control of Communicable Diseases Manual (American Public Health Association, Washington, DC, 1995).

    Google Scholar 

  15. W. Silvert, Ecological Modeling 68 (1993) 91-118.

    Article  Google Scholar 

  16. J.W. Forrester, Industrial Dynamics (MIT Press, Cambridge, Mass, 1961).

    Google Scholar 

  17. B. Hannon and M. Ruth, Modeling Dynamic Biological Systems (Springer, New York, NY, 1997).

    Google Scholar 

  18. M. Ruth and B. Hannon, Modeling Dynamic Economic Systems (Springer, New York, NY, 1997).

    Google Scholar 

  19. J.M. David, L. Andral and M. Artois, Ecological Modeling 15 (1982) 107-125.

    Article  Google Scholar 

  20. P.J. Bacon, Population Dynamics of Rabies in Wildlife (Academic Press, New York, NY, 1985).

    Google Scholar 

  21. P.C.L. White, S. Harris and G.C. Smith, Journal of Applied Ecology 32 (1995) 693-706.

    Article  Google Scholar 

  22. J.D. Murray, E.A. Stanley and D.L. Brown, Proceedings of the Royal Society of London B 229 (1986) 111-150.

    CAS  Google Scholar 

  23. G. Gardner, A. Leslie, R.T. Gardner and J. Cunningham, Zeitschrift fur Naturforschung 45c (1990) 1230-1240.

    Google Scholar 

  24. P.J. Bacon and D. MacDonald, Nature 289 (1980) 634-635.

    Article  Google Scholar 

  25. F. Steck and A. Wandeler, Epidemiologic Reviews 2 (1980) 71-96.

    CAS  Google Scholar 

  26. W.J. Trewhella, S. Harris and F.E. McAllister, Journal of Applied Ecology 25 (1988) 423-434.

    Article  Google Scholar 

  27. G.L. Storm, R.D. Andrews, R.L. Phillips, R.A. Bishop, D.B. Siniff and J.R. Tester, Wildlife Monograph 49 (1976) 1-81.

    Google Scholar 

  28. J.D. Murray, American Scientist 75 (1987) 280-284.

    Google Scholar 

  29. R.M. Anderson, H.C. Jackson, R.M. May and A.M. Smith, Nature 289 (1981) 765-771.

    Article  CAS  Google Scholar 

  30. F.J. Fenner, E. Paul, J. Gibbs, F.A. Murphy, R. Rott, M.J. Studdert and D.O. White, Veterinary Virology, 2nd Ed. (Academic Press, New York, NY, 1993).

    Google Scholar 

  31. C.E. Rupprecht, J.S. Smith, M. Fekadu and J.E. Childs, Emerging Infectious Diseases 1 (1995) 107-114.

    Article  CAS  Google Scholar 

  32. C. Kaplan, G.S. Turner and D.A. Warrell, Rabies: The Facts, 2nd Ed. (Oxford University Press, Oxford, 1986).

    Google Scholar 

  33. D.W. MacDonald, Rabies and Wildlife: A Biologist's Perspective (Oxford University Press, Oxford, 1980).

    Google Scholar 

  34. B.N. Fields, D.M. Knipe, R.M. Chanock, M.S. Hirsch, J.L. Melnick, 62 B. Deal et al. / A dynamic model of the spatial spread of an infectious disease T.P. Monath and B. Roizman, Virology, 2nd Ed. (Raven Press, New York, NY, 1990).

    Google Scholar 

  35. G. Scherba, Presentation to Ecological Modeling Group, Associate Professor of Veterinary Virology, University of Illinois (April 1998).

  36. G.P. West, Rabies in Man and Animals (Arco Publishing Co., New York, NY, 1973).

    Google Scholar 

  37. P. Bacon and D. MacDonald, New Scientist 28 (1980).

  38. G.M. Baer, The Natural History of Rabies, Vol. I (Academic Press, New York, NY, 1975).

    Google Scholar 

  39. T.G. Scott, Illinois Natural History Survey Division, Biological Notes, No. 35 (1955).

  40. G. Hubert, Personal communication, Division of Wildlife Resources, Illinois Department of Natural Resources (May 1998).

  41. C.P. Doncaster and D.W. MacDonald, Journal of Zoology 241 (1997) 73-87.

    Article  Google Scholar 

  42. R.L. Parker and R.E. Wilsnack, American Journal of Veterinary Research 27 (1966) 33-38.

    CAS  Google Scholar 

  43. R.K. Sikes, American Journal of Veterinary Research 68 (1962) 1042-1047.

    Google Scholar 

  44. P.C.L. White and S. Harris, Journal of Animal Ecology 63 (1994) 315-327.

    Article  Google Scholar 

  45. W.G. Sheldon, Journal of Wildlife Management 14 (1950) 33-42.

    Google Scholar 

  46. J. Westervelt and M. Shapiro, GRASS. The Geographic Resources Analysis Support System User's Reference Manual (Version 4.1) Champaign, IL, US Army Corps of Engineers (1993).

    Google Scholar 

  47. T. Gosselink, Personal communication, Illinois Natural History Survey, Champaign, IL (March 1998).

  48. D. Luman, M. Joselyn and L. Suloway, Illinois Scientific Survey Joint Report #3, Illinois Natural History Survey (1996).

  49. I.M. Cowan, Journal of Mammalogy 30 (1949) 396-398.

    Article  CAS  Google Scholar 

  50. K. Bögel, H. Moegle, W. Krocza and L. Andral, Bulletin of the World Health Organization 59 (1981) 269-279.

    Google Scholar 

  51. G.M. Baer, M.K. Abelseth and J.G. Debbie, American Journal of Epidemiology 93 (1971) 487-490.

    CAS  Google Scholar 

  52. J.G. Black and K.F. Lawson, Canadian Veterinary Journal 14 (1973) 206-211.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deal, B., Farello, C., Lancaster, M. et al. A dynamic model of the spatial spread of an infectious disease: the case of fox rabies in Illinois. Environmental Modeling & Assessment 5, 47–62 (2000). https://doi.org/10.1023/A:1019045224429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019045224429

Navigation