Skip to main content
Log in

Analysis of particulate composite behaviour based on non-linear elasticity and modulus degradation theory

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A micromechanical model for the analysis of particulate mechanical behaviour is presented. Non-linear effects were introduced in the model by a non-linear elastic description of the matrix and through a modulus degradation routine. The first part of the study used the experimental data from a range of glass bead/HTPB composites to back-calculate model parameters. The results showed that the model gave a good representation of the processes believed to control mechanical behaviour. These processes include partial particle debonding and progressive debonding from the largest to smallest particles throughout the strain history. The second part of the study examined the sensitivity of the model results to small changes in the adjustable input parameters. The residual bond in a debonded particle was found to have a dominating effect on the calculated results. Based on the sensitivity results, “best guess” interaction and debonding parameters were selected to examine the predictive capability of the model. In most cases, the predicted composite stresses were within 10% of the experimental data. Dilatation was usually over-predicted. The results showed that the model was capable of predicting the mechanical behaviour as long as suitable values for critical stress and adhesion energy were available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. FREUDENTHAL and M. SHINOZUKA, AIAA J. 1 (1963) 107.

    Google Scholar 

  2. L. R. HERRMANN, ibid. 3 (1965) 1896.

    Google Scholar 

  3. R. A. SCHAPERY, in “Proceedings of the ICRPG/AIAA 3rd Solid Propulsion Conference”, Atlantic City, 4-6 June 1968 (AIAA, Reston, VA) Paper 68-520.

  4. R. J. FARRIS, “Development of a Solid Rocket Propellant Nonlinear Constitutive Theory”, Phillips Laboratory, Report AFRPL-TR-75-20 (1975).

  5. T. Y. LEE, AIAA J. 17 (1979) 1015.

    CAS  Google Scholar 

  6. T. L. COST, in “Proceedings of the AIAA/SAE/ASME 18th Conference”, Cleveland, 21-24 June 1982 (AIAA, Reston, VA) Paper 82-1098.

  7. S. R. SWANSON and L. W. CHRISTENSEN, J. Spacecraft 20 (1983) 559.

    Google Scholar 

  8. I. W. JONES and E. PIERRE-LOUIS, Computers Structures 21 (1985) 235.

    Article  Google Scholar 

  9. C. P. BUCKLEY, Rheol. Acta 27 (1988) 224.

    Article  CAS  Google Scholar 

  10. M. BURKE, P. WOYTOWITZ and G. REGGI, J. Propulsion Power 8 (1992) 586.

    Article  CAS  Google Scholar 

  11. S. OZUPEK and E. B. BECKER, J. Engng Mater. Technol. 114 (1992) 111.

    CAS  Google Scholar 

  12. F. R. SCHWARZL, “Mechanical Properties of Highly Filled Polymers III”, Central Laboratory TNO Delft (Netherlands), Report CL-64/49 (1964).

  13. R. A. SCHAPERY, “A Nonlinear Constitutive Theory for Particulate Composites Based on Viscoelastic Fracture Mechanics”, Texas A and M, Report MM2764-73-1 (1973).

  14. A. H. LEPIE and A. ADICOFF, J. Appl. Polym. Sci. 19 (1975) 2821.

    Article  Google Scholar 

  15. R. A. SHAPERY, Engng Fract. Mech. 25 (1986) 845.

    Article  Google Scholar 

  16. B. J. SULLIVAN and Z. HASHIN, “Analysis of the Properties of Solid Propellants”, Materials Sciences Corporation, Report MSC/TFR/1901/8305 (1988).

  17. I. L. DAVIS and R. G. CARTER, “Microstructural Propellant Constitutive Theory”, Vol. 1, Astronautics Laboratory, Report AL-TR-89-009 (1989).

  18. T. L. SMITH, Trans. Soc. Rheol. 3 (1959) 113.

    Article  CAS  Google Scholar 

  19. R. J. FARRIS, ibid. 12 (1968) 315.

    Article  CAS  Google Scholar 

  20. L. L. VRATSANOS-ANDERSON and R. J. FARRIS, POLYM. ENGNG SCI. 33 (1993) 1458.

  21. Idem, ibid. 33 (1993) 1466.

  22. J. LEIDNER and R. T. WOODHAMS, J. Appl. Polym. Sci. 18 (1974) 1639.

    Article  CAS  Google Scholar 

  23. M. MORTON, R. J. MURPHY and T. C. CHENG, Adv. Chem. Series 142 (1974) 409.

    Article  Google Scholar 

  24. G. LANDON, G. LEWIS and J. F. BODEN, J. Mater. Sci. 12 (1977) 1605.

    Article  CAS  Google Scholar 

  25. D. W. NICHOLSON, J. Adhesion 10 (1979) 255.

    Google Scholar 

  26. J. C. SMITH, G. A. KERMISH and C. A. FENSTERMAKER, ibid. 4 (1972) 109.

  27. P. DREYFUSS, A. N. GENT and J. R. WILLIAMS, J. Polym. Sci. Polym. Phys. Ed. 18 (1980) 2135.

    Article  CAS  Google Scholar 

  28. B. PUKANSZKY, Composites 21 (1990) 255.

    Article  CAS  Google Scholar 

  29. J. A. KING, D. A. BUTTRY and D. F. ADAMS, Polym. Compos. 14 (1993) 292.

    Article  CAS  Google Scholar 

  30. M. SUMITA, T. OOKUMA, K. MIYASAKA and K. ISHIKAWA, J. Appl. Polym. Sci. 27 (1982) 3059.

    Article  CAS  Google Scholar 

  31. S. N. MAITI and P. K. MAHAPATRO, ibid. 42 (1991) 3101.

    Article  CAS  Google Scholar 

  32. J. C. HALPIN and J. L. KARDOS, Polym. Engng Sci. 16 (1976) 344.

    Article  CAS  Google Scholar 

  33. R. F. FEDORS, Polymer 20 (1979) 324.

    Article  CAS  Google Scholar 

  34. Z. HASHIN and S. SHTRIKMAN, J. Mech. Phys. Solids 11 (1963) 127.

    Article  Google Scholar 

  35. L. J. WALPOLE, ibid. 17 (1969) 235.

    Article  Google Scholar 

  36. Z. HASHIN, ibid. 40 (1992) 767.

    Article  Google Scholar 

  37. N. LAWS and R. McLAUGHLIN, Proc. R. Soc. Lond. Ser. A 359 (1978) 251.

    Article  CAS  Google Scholar 

  38. F. LENE and D. LEGUILLON, Int. J. Solids. Struct. 18 (1982) 443.

    Article  Google Scholar 

  39. A. NEEDLEMAN, J. Appl. Mech. 54 (1987) 525.

    Google Scholar 

  40. Y. P. QIU and G. J. WENG, ibid. 59 (1992) 261.

    Google Scholar 

  41. F. C. WONG and A. AIT-KADI, J. Appl. Polym. Sci. 55 (1995) 263.

    Article  CAS  Google Scholar 

  42. Idem, J. Compos. Mater. 31 (1997) 104.

    Google Scholar 

  43. T. MORI and K. TANAKA, Acta Metall. 21 (1973) 571.

    Article  Google Scholar 

  44. J. W. JU and T. M. CHEN, Acta Mech. 103 (1994) 123.

    Article  Google Scholar 

  45. F. C. WONG, “Mechanical Behaviour of Particulate Composites: Experiments and Micromechanical Predictions”, Defence Research Establishment Valcartier, Report R-9403/94 (1994).

  46. O. HOFFMAN and G. SACHS, “Introduction to the Theory of Plasticity for Engineers” (McGraw-Hill, New York, 1953).

    Google Scholar 

  47. G. E. MASE and G. T. MASE, “Continuum Mechanics for Engineers” (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  48. R. L. McCULLOUGH, in “Delaware Composites Design Encyclopedia”, Vol. 2 edited by L. A. Carlsson and J. W. Gillespie, Jr. (Technomic, Lancaster, 1990) pp. 93-142.

    Google Scholar 

  49. J. G. BENNETT and K. S. HABERMAN, J. Compos. Mater. 30 (1996) 1732.

    CAS  Google Scholar 

  50. U. YILMAZER and R. J. FARRIS, J. Appl. Polym. Sci. 28 (1983) 3369.

    Article  CAS  Google Scholar 

  51. R. D. COOK, D. S. MALKUS and M. E. PLESHA, “Concepts and Applications of Finite Element Analysis” (Wiley, New York, 1989) pp. 502-4.

    Google Scholar 

  52. J. E. FITZGERALD and W. L. HUFFERD (eds) “Uniaxial Tensile Tests at Constant Strain Rate” in “Solid Propellant Mechanical Behaviour Manual”, Publ. 21 (Chemical Propulsion Information Agency, Silver Spring, 1970) p. 4.3.2-1.

  53. L. L. ANDERSON, PhD dissertation, University of Massachusetts (1989).

  54. R. A. PRIEMON-STORER (ed.) Test Method for Tensile Properties of Plastics, ASTM D638-82a (American Society for Testing and Materials, Philadelphia, PA, 1984).

  55. Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM D792-86 (American Society for Testing and Materials, Philadelphia, PA, 1987).

  56. G. R. HAMED, Rubber Chem. Tech. 64 (1991) 493.

    CAS  Google Scholar 

  57. P. HERRERA-FRANCO and L. T. DRZAL, Composites 23 (1992) 2.

    Article  CAS  Google Scholar 

  58. T. M. MOWER and A. S. ARGON, J. Mater. Sci. 31 (1996) 1585.

    Article  CAS  Google Scholar 

  59. R. K. EVERETT, J. Compos. Mater. 30 (1996) 748.

    CAS  Google Scholar 

  60. T. MOCHIDA, T. MINORU and M. OBATA, JSME Int. J. Series I 34 (1991) 187.

    CAS  Google Scholar 

  61. W. TONG and G. RAVICHANDRAN, Compos. Sci. Technol. 52 (1994) 247.

    Article  CAS  Google Scholar 

  62. S. BAZHENOV, Polym. Engng Sci. 35 (1995) 813.

    Article  CAS  Google Scholar 

  63. G. P. TANDON and G. J. WENG, J. Appl. Mech. 53 (1986) 511.

    Article  Google Scholar 

  64. S. MITSUI, H. KIHARA, S. YOSHIMI and Y. OKAMOTO, Polym. Engng Sci. 36 (1996) 2241.

    Article  CAS  Google Scholar 

  65. K. FRIEDREICH and U. A. KARSH, J. Mater Sci. 16 (1981) 2167.

    Article  Google Scholar 

  66. A. NEEDLEMAN, Ultramicroscopy 40 (1992) 203.

    Article  Google Scholar 

  67. Y. HUANG, D. L. HUNSTON, A. J. KINLOCH and C. K. RIEW, Adv. Chem. Ser. 233 (1993) 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WONG, F.C., AIT-KADI, A. Analysis of particulate composite behaviour based on non-linear elasticity and modulus degradation theory. Journal of Materials Science 32, 5019–5034 (1997). https://doi.org/10.1023/A:1018648929361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018648929361

Keywords

Navigation