Skip to main content
Log in

Ageing behaviour of SiCp-reinforced AA 7075 composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The precipitation behaviour in 7075 aluminium alloy matrix composites reinforced with 0–40 vol% particulate SiCp (12.5 μm) was studied using macrohardness (HV) measurements and differential scanning calorimetry (DSC). In the low volume percentage (5,10) SiCp composites, the hardness-ageing curves and DSC scans are similar to those of the unreinforced alloy. However, the age-hardening quantities and DSC Gurnier-Preston (GP) zone peak size are smaller than those of the unreinforced alloy. Additionally, the high-temperature peaks (ageing curves at 200 °C or DSC scanning curves) are broader. In the high volume percentage (20, 30, 40) SiCp composites, the hardness-ageing curves and DSC scans are very different from those of the unreinforced alloys. Only a high-temperature broad peak was observed during the DSC scanning. On the hardness-ageing curves no hardening phenomena were detected, but rather a softening phenomenon occurred in the 30% or 40% SiCp composites, suggesting that during ageing an exothermic dislocation recovery softening process coexists with precipitation hardening. A model was introduced by dividing the matrix of the composite into Region I (normal precipitation) and Region II (particular precipitation). The precipitation of GP zones is completely suppressed and the precipitation of η′ phase is accelerated in Region II. The matrix of the low volume fraction SiCp composite comprises Regions I and II, whereas that of the high volume fraction SiCp composite comprises only Region II. The ageing behaviour and DSC scans of the composites can be fully explained by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. CHRISTMAN, A. NEEDLEMAN and S. SURESH, Acta Metall. 37 (1989) 3029.

    Article  CAS  Google Scholar 

  2. T. G. NIEH and R. F. KARLAK, Scripta Metall. 18 (1984) 25.

    Article  CAS  Google Scholar 

  3. J. CHRISTMAN, A. NEEDLEMAN, S. NUTT and S. SURESH, Mater. Sci. Eng. A107 (1989) 49.

    CAS  Google Scholar 

  4. I. DUTTA and D. L. BOURELL, ibid. A112 (1989) 67.

    CAS  Google Scholar 

  5. T. CHRISTMAN and S. SURESH, Acta Metall. 36 (1988) 1691.

    Article  CAS  Google Scholar 

  6. J. M. PAPAZIAN, Metall. Trans. 19A (1988) 2945.

    CAS  Google Scholar 

  7. I. DUTTA, S. M. ALLEN and J. L. HAFLEY, ibid. 22A (1991) 2553.

    CAS  Google Scholar 

  8. J. L. PETTY-GALIS and R. D. GOOLSBY, J. Mater. Sci. 24 (1989) 1439.

    Article  CAS  Google Scholar 

  9. C. BADINI, F. MARINO and A. TOMASI, ibid. 26 (1991) 6279.

    Article  CAS  Google Scholar 

  10. M. J. HADIANFARD, YIU-WING MAI and J. C. HEALY, ibid. 28 (1993) 3665.

    Article  Google Scholar 

  11. Y. SONG and T. N. BAKER, Mater. Sci. Technol. 10 (1994) 406.

    CAS  Google Scholar 

  12. I. DUTTA, C. P. HARPER and G. DUTTA, Metall. Trans. 25A (1994) 1591.

    CAS  Google Scholar 

  13. L. SALVO and M. SUERY, Mater. Sci. Eng. A117 (1994) 19.

    Google Scholar 

  14. I. DUTTA and D. L. BOURELL, Acta Metall. 38 (1990) 2041.

    Article  CAS  Google Scholar 

  15. C. M. FRIEND and S. D. LUXTON, J. Mater. Sci. 23 (1988) 3173.

    Article  CAS  Google Scholar 

  16. T. S. KIM, T. H. KIM, K. H. OH and H. I. LEE, ibid. 27 (1992) 2599.

    Article  CAS  Google Scholar 

  17. S. IKENO, K. KAWASHIMA, K. MATSUDA, H. ANADA and S. TADA, Keikinzoku Jpn 40 (1990) 501.

    CAS  Google Scholar 

  18. Idem, ibid. 41 (1991) 752.

    CAS  Google Scholar 

  19. Y. FLOM and R. J. ARSENAULT, Mater. Sci. Eng. 75 (1985) 151.

    Article  CAS  Google Scholar 

  20. R. J. ARSENAULT and N. SHI, ibid. 81 (1986) 175.

    Article  CAS  Google Scholar 

  21. G. THOMAS and J. NUTTING, J. Inst. Metals 88 (1959-60) 81.

    Google Scholar 

  22. M. P. THOMAS and J. E. KING, J. Mater. Sci. 29 (1994) 5272.

    Article  CAS  Google Scholar 

  23. E. HUNT, P. D. PITCHER and P. J. GREGSON, Scripta. Metall. 24 (1990) 937.

    Article  CAS  Google Scholar 

  24. JOHN E. HATCH (ed.), "Aluminum: Properties and Physical Metallurgy" (ASM, Metals Park, OH, 1984).

    Google Scholar 

  25. J. K. PARK and A. J. ARDELL, Metall. Trans. 14A (1983) 1957.

    CAS  Google Scholar 

  26. Idem, Scripta. Metall. 22 (1988) 1115.

    Article  CAS  Google Scholar 

  27. J. LENDVAI, GY. HONYEK, and I. KOVACS, ibid. 13 (1979) 593.

    Article  CAS  Google Scholar 

  28. I. J. POLMEAR, J. Inst. Metals 86 (1957-58) 535.

    Google Scholar 

  29. W. LACOM, H. P. DEGISCHER and C. Y. ZAHRA, Scripta Metall. 14 (1980) 253.

    Article  CAS  Google Scholar 

  30. J. M. PAPAZIAN, Metall. Trans. 13A (1982) 761.

    Google Scholar 

  31. D. J. LLOYD and M. C. CHATURVEDI, J. Mater. Sci. 17 (1982) 1819.

    Article  CAS  Google Scholar 

  32. K. T. KIM, J. K. LEE and M. R. PLICHTA, Metall. Trans. 21A (1990) 673.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHEU, CY., LIN, SJ. Ageing behaviour of SiCp-reinforced AA 7075 composites. Journal of Materials Science 32, 1741–1747 (1997). https://doi.org/10.1023/A:1018576000575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018576000575

Keywords

Navigation