Skip to main content
Log in

Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behaviour

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The synthesis and properties of carbonated apatite materials have received considerable attention due to their importance for medical and dental applications. Such apatites closely resemble the mineral phase of bone, exhibiting superior osteoconductive and osteogenic properties. When formed at physiological temperature they present significant potential for bone repair and fracture fixation. The present study investigates the mechanical properties of a carbonated apatite cancellous bone cement. Flexural strength was measured in three and four point bending, and the fracture toughness and fatigue crack-growth behaviour was measured using chevron and disc-shaped compact tension specimens. The average flexural strength was found to be ∼0.468 MPa, and the fracture toughness was ∼0.14 MPa√m. Fatigue crack-growth rates exhibited a power law dependence on the applied stress intensity range with a crack growth exponent m=17. The fatigue threshold value was found to be ∼0.085 MPa√m. The mechanical properties exhibited by the carbonated apatite were found to be similar to those of other brittle cellular foams. Toughness values and fatigue crack-growth thresholds were compared to other brittle foams, bone and ceramic materials. Implications for structural integrity and longer term reliability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. M. BILLS and E. J. WHEELER, J. Ed. Mod. for Mater. Sci. Engng. 4 (1982) 391.

    Google Scholar 

  2. P. D. COSTANTINO, C. D. FRIEDMAN, K. JONES, L. C. CHOW, H. J. PELZER and G. A. SISSON, Arch. Otolaryngol Head Neck Surg. 117 (1991) 379.

    Google Scholar 

  3. H. OHGUSHI, M. OKUMURA, T. YOSHIKAWA, K. INOUE, N. SENPUKU and S. TAMAI, J. Biomed. Mater. Res. 26 (1992) 885.

    Google Scholar 

  4. I. C. ISON, M. T. FULMER, B. M. BARR and B. R. CONSTANTZ, in “Hydroxyapatite and related materials”, edited by P. W. Brown and B. Constantz (CRC Press, 1994) p. 215.

  5. G. VAES, Clin. Orthopaed. Rel. Res. 231 (1988) 239.

    Google Scholar 

  6. H. C. BLAIR, S. L. TEIDELBAUM, H. L. TAN, C. M. KOZIOL and P. H. SCHLESINGER, “Passive chloride permeability charge coupled to H+-ATPase of Avian osteoclast ruffled membrane” Am. J. Phys. (1991) 260[6] C13151324.

    Google Scholar 

  7. Norian Corporation, “Chemical and crystallographic characteristics” (Mountain View, CA, 1994).

  8. B. R. CONSTANTZ, I. C. ISON, M. T. FULMER, R. D. POSER, S. T. SMITH, M. VanWAGONER, J. ROSS, S. A. GOLDSTEIN, J. B. JUPITER and D. L. ROSENTHAL, Science 267 (1995) 1796.

    Google Scholar 

  9. M. VIGNOLES, G. BONEL, D. W. HOLCOMB and R. A. YOUNG, Calcif. Tiss. Int. 43 (1988) 33.

    Google Scholar 

  10. J. E. HARRIES, S. S. HASNAIN and J. S. SHAH, ibid. 41 (1987) 346.

    Google Scholar 

  11. R. M. BILTZ and E. D. PELLEGRNO, Clin. Orth. Rel. Res. 129 (1977) 279.

    Google Scholar 

  12. R. I. MARTIN and P. W. BROWN, J. Mater. Sci. Mater. Med. 6 (1995) 138.

    Google Scholar 

  13. P. VAN LANDUYT, F. LI, J. P. KEUSTERMANS, J. M. STREYIO, F. DELANNAY and E. MUNTING, J. Mater. Sci. Mater. Med. 6 (1995) 8.

    Google Scholar 

  14. H. AOKI, in “Science and medical applications of hydroxyapatite” (Takayama Press, 1991).

  15. G. deWITH, H. J. A. van DIJK, N. HATTU and K. PRIJS, J. Mater. Sci. 16 (1981) 1592.

    Google Scholar 

  16. Norian Corporation, “The materials science of Norian SRSTM, skeletal repair system” (Mountain View, CA, 1994)

  17. F. I. BARATTA, W. T. MATHEWS and G. D. QUINN, “Errors associated with flexture testing of brittle materials” (US Army Materials Testing Laboratory, 1987).

  18. D. G. MUNZ, J. L. SHANNON and R. T. BUBSEY, Int. J. Fracture 16 (1980) R137.

    Google Scholar 

  19. T. T. SHIH, J. Test. Eval. 9 (1981) 50.

    Google Scholar 

  20. G. HIMSOLT, D. MUNZ and T. FETT, Commun, J. Amer. Ceram. Soc. 70 (1987) C–133.

    Google Scholar 

  21. R. H. DAUSKARDT, D. B. MARSHAL and R. O. RITCHIE, ibid. 73 (1990) 893.

    Google Scholar 

  22. R. O. RITCHIE, R. H. DAUSKARDT, W. YU and A. M. BRENDZEL, J. Biomed. Mater. Res. 24 (1990) 189.

    Google Scholar 

  23. R. H. DAUSKARDT, R. O. RITCHIE, J. K. TAKEMOTO and A. M. BRENDZEL, J. Biomech. Mater. Res. 28 (1994) 791.

    Google Scholar 

  24. ASTM Standard E399-90, in “1990 ASTM annual book of standards”, Vol 3.01. (American Society for Testing and Materials, Philadelphia, PA, 1990) p. 485.

    Google Scholar 

  25. J. E. SRAWLEY, Int. J. Fracture 12 (1976) 475.

    CAS  PubMed  Google Scholar 

  26. M. D. DRORY, R. H. DAUSKARDT, A. KANT and R. O. RITCHIE, J. Appl. Phys. 78 (1995) 3083.

    Google Scholar 

  27. ASTM Standard E. 645-86a, in “1987 ASTM annual book of standards”, Vol 3.01. (American Society for Testing and Materials, Philadelphia, PA, 1987) p. 899.

    Google Scholar 

  28. S. SURESH and R. O. RITCHIE, in “Fatigue crack growth threshold concepts”, edited by D. L. Davidson and S. Suresh (The Metallurgical Society of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Warrendale, PA, 1984) p. 227.

    Google Scholar 

  29. A. SAXENA, S. J. HUDAK, Jr., J. K. DONALD and D. W. SCHMIDT, J. Test. Eval. 6 (1978) 167.

    Google Scholar 

  30. Norian Corporation, “Mechanical and physical characteristics of Norian SRS skeletal repair system” (Mountain View, CA 1994).

  31. L. J. GIBSON and M. F. ASHBY, in “Cellular solids: structure and properties” (Pergamon Press, New York, 1988) p. 316.

    Google Scholar 

  32. A. G. EVANS, J. Amer. Ceram. Soc. 73 (1990) 187.

    Google Scholar 

  33. R. H. DAUSKARDT and R. O. RITCHIE, in “An introduction to bioceramics”, edited by L. L. Hench and J. Wilson (World Scientific, Singapore, 1993) p. 261.

    Google Scholar 

  34. R. HASSAN, A. A. CAPUTO and R. F. BUNSHAH, J. Dent. Res. 60 (1981) 820.

    Google Scholar 

  35. S. K. MAITI, M. F. ASHBY and L. J. GIBSON, Sripta Metall. 18 (1984) 213.

    Google Scholar 

  36. A. McLNTYRE and G. E. ANDERTON, Polymer 20 (1979) 247.

    Google Scholar 

  37. J. W. MELVIN, J. Biomech. Eng., Trans. ASME 115 (1993) 549.

    Google Scholar 

  38. W. BONFIELD and P. K. DATTA, J. Mater. Sci. 9 (1974) 1609.

    Google Scholar 

  39. R. H. DAUSKARDT, M. R. JAMES, J. R. PORTER and R. O. RICHIE, J. Amer. Ceram. Soc. 75 (1992) 759.

    Google Scholar 

  40. P. C. PARIS and F. ERDOGAN, J. Basic Eng., Trans. ASME 85 (1963) 528.

    Google Scholar 

  41. C. J. GILBERT, R. N. PETRANY, R. O. RITCHIE, R. H. DAUSKARDT and R. W. STEINBRECH, J. Mater. Sci. 30 (1995) 643.

    Google Scholar 

  42. C. J. GILBERT, R. H. DAUSKARDT and R. O. RITCHIE, J. Amer. Ceram. Soc. 78 (1995) 2291.

    Google Scholar 

  43. N. A. FLECK, K. J. KANG and M. F. ASHBY, Acta Metall. Mater. 42 (1994) 365.

    Google Scholar 

  44. T. M. WRIGHT and W. C. HAYES, J. Biomed. Mater. Res. Symn. 10 (1976) 637.

    Google Scholar 

  45. R. H. DAUSKARDT, Acta Metall. Mater. 41 (1993) 2765.

    Google Scholar 

  46. R. H. DAUSKARDT, R. O. RITCHIE and B. N. COX, Adv. Mater. Proc. 7 (1993) 26.

    Google Scholar 

  47. J. W. MELVIN, J. Biomech. Eng. 115 (1993) 549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MORGAN , E.F., YETKINLER , D.N., CONSTANTZ , B.R. et al. Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behaviour. Journal of Materials Science: Materials in Medicine 8, 559–570 (1997). https://doi.org/10.1023/A:1018550831834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018550831834

Keywords

Navigation