Skip to main content
Log in

Tentacular diversity in deep-sea deposit-feeding holothurians: implications for biodiversity in the deep sea

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

The tentacles of deep-sea holothurians show a wide range of morphological diversity. The present paper examines gross tentacle morphology in surface deposit feeding holothurians from a range of bathymetric depths. Species studied included the elasipods: Oneirophanta mutabilis, Psychropotes longicauda and Benthogone rosea and the aspidochirotids: Paroriza prouhoi, Pseudostichopus sp., Bathyplotes natans and Paroriza pallens. The sympatric abyssal species Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus sp. show subtle differences in diet and the structure and filling patterns of the gut that suggest differences in feeding strategies which may represent one mechanism to overcome competition for food resources in an environment where nutrient resources are considered to be, at least periodically, limiting. Interspecific differences in tentacle functional morphology and digestive strategies, which reflects taxonomic diversity could be explained in terms of Sanders'; Stability–Time Hypothesis. Since different tentacle types will turn over sediments to different extents, their impact on sedimentary communities will be enormous so that high diversity in meiofaunal communities may be explained most simply by Dayton and Hessler's Biological Disturbance Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakus, G.J. (1973) The biology and ecology of tropical holothurians. In Biology and geology of coral reefs, II, Biology. (O.A. Jones and R. Endean, eds) pp. 325–67. New York: Academic Press.

    Google Scholar 

  • Billett, D.S.M. (1991). Deep-sea holothurians. Oceanog. Mar. Biol. Ann. Rev. 29, 259–317.

    Google Scholar 

  • Billett, D.S.M. and Hansen, B. (1982) Abyssal aggregations of Kolga hyalina Danielssen and Koren (Echinodermata: Holothuroidea) in the Northeast Atlantic Ocean. Deep-Sea Res. 29, 799–818.

    Google Scholar 

  • Billett, D.S.M., Llewellyn, C. and Watson, J. (1988) Are deep-sea holothurians selective feeders? In Echinoderm Biology. (Burke et al., eds) pp. 421–429. A.A. Rotterdam: Balkema.

    Google Scholar 

  • Bouland, C., Massin, C. and Jangoux, M. (1982) The fine structure of the bucal tentacles of Holothuria forskali (Echinodermata: Holothuroidea). Zoomorphol. 101, 133–49.

    Google Scholar 

  • Briggs, K.B. (1985) Deposit feeding by some deep-sea megabenthos from the Venezuela Basin: selective or non-selective. Mar. Ecol. Prog. Ser. 21, 127–34.

    Google Scholar 

  • Brumbaugh, J.H. (1965) The anatomy, diet and tentacular feeding mechanism of the dendrochirote holothurian Cucumaria curata Cowles 1907. PhD Dissertation, Stanford University, 119 pp.

  • Cameron, J.L. and Fankboner, P.V. (1984) Tentacle structure and feeding processes in life stages of the commercial sea cucumber Parastichopus californicus (Stimpson). J. Exp. Mar. Biol. Ecol. 81, 193–209.

    Google Scholar 

  • Cammen, L.M. (1982) Effect of particle size on organic content and microbial abundance within four marine sediments. Mar. Ecol. Prog. Ser. 9, 273–80.

    Google Scholar 

  • Costelloe, J. and Keegan, B.F. (1984) Feeding and related morphological structures in the dendrochirote Aslia lefevrei (Holothuroidea: Echinodermata). Mar. Biol. 84, 135–42.

    Google Scholar 

  • Dayton, P.K. and Hessler, R.R. (1972) Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res. 19, 199–208.

    Google Scholar 

  • Fankboner, P.V. (1978) Suspension-feeding mechanisms of the armoured sea cucumber Psolus chitinoides Clark. J. Exp. Mar. Biol. Ecol. 31, 11–25.

    Google Scholar 

  • Fankboner, P.V. (1981) A re-examination of mucous feeding by the sea cucumber Leptopentacta (= Cucumaria) elongata. J. Mar. Biol. Assoc. UK. 61, 679–83.

    Google Scholar 

  • Fenchel, T., Kofoed, L.H. and Lappalainen, A. (1975) Particle-size selection of two deposit feeders: the amphipod Corophium volutator and the Prosobranch Hydrobia ulvae. Mar. Biol. 30, 119–28.

    Google Scholar 

  • Grassle, J.F. and Sanders, H.L. (1973) Life histories and the role of disturbance. Deep-Sea Res. 20, 643–59.

    Google Scholar 

  • Hammond, L.S. (1982) Analysis of grain size selection by deposit-feeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Mar. Ecol. Prog. Ser. 8, 25–36.

    Google Scholar 

  • Hansen, B. (1975) Systematics and biology of the deep-sea holothurians. Galathea Report 13, 1–262.

    Google Scholar 

  • Hauksson, E. (1979) Feeding biology of Stichopus tremulus, a deposit-feeding holothurian. Sarsia 64, 155–60.

    Google Scholar 

  • Higgins, R. and Thiel, H. (1988) Introduction to the study of Meiofauna. Washington, DC: Smithsonian Press.

    Google Scholar 

  • Hobbie, J. and Lee, C. (1980) Microbial production of extracellular material: Importance in benthic ecology. In Marine Benthic Dynamics (K.R. Tenore and B.C. Coull, eds) pp. 341–346. Columbia: USC Press.

    Google Scholar 

  • Huston, M. (1979) A general hypothesis of species diversity. Am. Nat. 113, 81–101.

    Google Scholar 

  • Hylleberg, J. (1975) Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14, 113–37.

    Google Scholar 

  • Jumars, P.A. (1975) Methods for measurement of community structure in deep-sea macrobenthos. Mar. Biol. 30, 245–52.

    Google Scholar 

  • Jumars, P.A. (1976) Deep-sea species diversity; does it have a characteristic scale? J. Mar. Res. 34, 253–66.

    Google Scholar 

  • Jumars, P.A. and Gallagher, E.D. (1982). Deep-sea community structure; three plays on the benthic proscenium. In The Environment of the Deep-Sea. (W.G. Ernst, and J.G. Morin, eds) pp. 217–255. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Jumars, P.A., Self, R.F.L, and Nowell, A.R.M. (1982) Mechanics of particle selection by tentacular deposit feeders. J. Exp. Mar. Biol. Ecol. 64, 47–70.

    Google Scholar 

  • Khripounoff, A. and Sibuet, M. (1980) La nutrition d'échinodermes abyssaux. I. Alimentation des holothuries. Mar. Biol. 60, 17–26.

    Google Scholar 

  • Klinger, T.S., Johnson, C.R. and Jell, J. (1994) Sediment utilization, feeding-niche breadth and feeding-niche overlap of Aspidochirotida (Echinodermata: Holothuroidea) at Heron Island, Great Barrier Reef. In Echinoderms Through Time. (B. David, A. Guille, J-P. Féral and M. Roux, eds) pp. 523–528. Rotterdam: Balkema.

    Google Scholar 

  • Krebs, C.J. (1989) Ecological Methodology. New York: Harper and Rowe publishers.

    Google Scholar 

  • Lawrence, J.M. (1980) Numbers and biomass of the common holothuroids on the windward reef flat at Enewetak atoll, Marshall Islands. In Echinoderms Present and Past. (M. Jangoux, ed.) pp. 201–204. Rotterdam: Balkema.

    Google Scholar 

  • Lopez, G.R. and Levinton, J.S. (1987) Ecology of deposit feeding animals in marine sediments. Quart. Rev. Biol. 62, 235–60.

    Google Scholar 

  • Massin, C. (1982). Food and feeding mechanisms: Holothuroidea. In Echinoderm Nutrition. (M. Jangoux and J.M. Lawrence, eds) pp. 43–55. Rotterdam: Balkema.

    Google Scholar 

  • Moore, H. and Roberts, D. (1994) Feeding strategies in abyssal holothurians. In Echinoderms through time. (B. David, A. Guille, J-P. Féral and M. Roux, eds) pp. 531–537. Balkema: Rotterdam.

    Google Scholar 

  • Moore, H., Manship, B. and Roberts, D. (1995) Gut structure and digestive strategies in three species of abyssal holothurians. In Echinoderm Research (Emson, Smith and Campbell, eds) pp. 111–119. Rotterdam: Balkema.

    Google Scholar 

  • Ohta, S. (1983) Photographic census of large-sized benthic organisms in the bathyal zone of Suruga Bay, central Japan. Bull. Ocean Res. Inst. University of Tokyo 15, 244.

    Google Scholar 

  • Pfannkuche, O. (1985) The deep-sea meiofauna of the Porcupine Sea bight and abyssal plain (N.E Atlantic): population structure, distribution, standing stocks. Oceanologica Acta. 8, 343–53.

    Google Scholar 

  • Rex, M.A. (1976) Biological accommodation in the deep-sea benthos: comparative evidence on the importance of predation and productivity. Deep-Sea Res. 23, 975–87.

    Google Scholar 

  • Rex, M.A. (1983) Geographic patterns of species diversity in the deep-sea benthos. In The Sea. 8, (G.T. Rowe, ed.) pp. 453–72.

  • Rice, A.L., Aldred, R.G., Darlington, E. and Wild, R.A. (1982) The quantitative estimation of the deep-sea megabenthos a new approach to an old problem. Oceanologica Acta 5, 63–72.

    Google Scholar 

  • Rice, A.L., Billett, D.S.M., Thurston, M.H. and Lampitt, R.S. (1991) The Institute of Oceanographic Sciences biology programme in the Porcupine Seabight: background and general introduction. J. Mar. Biol. Assoc. UK 71, 281–310.

    Google Scholar 

  • Roberts, D. (1979) Deposit-feeding mechanisms and resource partitioning in tropical holothurians. J. Exp. Mar. Biol. Ecol. 37, 45–56.

    Google Scholar 

  • Roberts, D. (1982) Classification and the holothurian tentacle. In Echinoderms (J.M. Lawrence, ed.) pp. 117–121. Tampa Bay, Balkema: Rotterdam.

    Google Scholar 

  • Roberts, D. and Bryce, C. (1982) Further observations on tentacular feeding mechanisms in holothurians. J. Exp. Mar. Biol. Ecol. 59, 151–63.

    Google Scholar 

  • Roberts, D., Moore, H., Manship, B., Wolff, G., Santos, V., Horsfall, I., Patching, J. and Eardly, D. (1996) Feeding strategies and impact of holothurians in the deep sea. In Proceedings of Irish Marine Science 1995. (B.F. Keegan and R. O'Connor, eds) Galway: Galway University Press.

    Google Scholar 

  • Sanders, H.L. (1968) Marine benthic diversity: a comparative study. Am. Nat. 102, 243–82.

    Google Scholar 

  • Santos, V., Billett, D.S.M., Rice, A.L. and Wolff, G.A. (1994) Organic matter in deep-sea sediments from the Porcupine Abyssal Plain in the North-East Atlantic Ocean. I. Lipids. Deep-Sea Res. 41, 787–819.

    Google Scholar 

  • Sibuet, M. (1984) Les invertebres detritivores dans l'ecosysteme abyssal. Selection de la nourriture et regime alimentaire chez les holothuries. Oceanis 10, 623–39.

    Google Scholar 

  • Sibuet, M. (1985) Quantitative distribution of echinoderms (Holothuroidea. Asteroidea. Ophiuroidea. Echinoidea) in relation to organic matter in the sediment, in deep-sea basins of the Atlantic Ocean. In Echinodermata. (B.F. Keegan, and B.D.S. O'Connor, eds) pp. 99–103. Rotterdam: Balkema.

    Google Scholar 

  • Sibuet, M. Khripounoff, A., Deming, J., Colwell, R. and Dinet, A. (1982) Modification of the gut contents in the digestive tract of abyssal holothurians. In Echinoderms. (J.M. Lawrence, ed.) pp. 421–8. Rotterdam: Balkema.

    Google Scholar 

  • Sloan, N.A. and von Bodungen, B. (1980) Distribution and feeding of the sea cucumber Isostichopus badionotus in relation to shelter and sediment criteria of the Bermuda Platform. Mar. Ecol. Prog. Ser. 2, 257–64.

    Google Scholar 

  • Smith, T.B. (1983) Tentacular ultrastructure and feeding behaviour of Neopentadactyla mixta (Holothuroidea: Dendrochirotida). J. Mar. Biol. Assoc. UK. 63, 301–11.

    Google Scholar 

  • Sokolova, M.N. (1958) The food of the deep-water benthic invertebrate detritophages. Tr. Inst. Okeanol. 27, 123–53.

    Google Scholar 

  • Taghon, G.L. (1982) Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia (Berlin) 52, 295–304.

    Google Scholar 

  • Taghon, G.L. (1989) Modeling deposit feeding. In Ecology of Marine Deposit Feeders. G. Lopez, G. Taghon, and J. Levinton, eds) pp 223–246. New York: Springer-Verlag.

    Google Scholar 

  • Taghon, G.L., Greene, R.R. and Bard, D. (1990) Effects of food value of artificial and natural sediments on functional response and net rate of energy gain by a deposit-feeding. In Behavioural Mechanisms of Food Selection (R.N. Hughes, ed.) Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Théel, Hj. (1882) Report on the Holothurioidea, I. Rep. Scient. Results Voyage Challenger, Zool. 4, 13, 1–176.

    Google Scholar 

  • Théel, Hj. (1886) Report on the Holothurioidea, II. Rep. Scient. Results Voyage Challenger, Zool. 14, 39, 1–290.

    Google Scholar 

  • Thiel, H., Pfannkuche, O., Schriever, G., Lochte, K., Gooday, A.J., Hemleben, C., Mantoura, R.F.C., Turley, C.M., Patching, J.H. and Riemann, F. (1990) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biol. Oceanog. 6, 203–39.

    Google Scholar 

  • Uthicke, S. (1994) Distribution patterns and growth of two reef flat holothurians, Holothuria atra and Stichopus chloronotus. In Echinoderms Through Time. (B. David, A. Guille, J-P. Féral and M. Roux, eds) pp. 569–76 Rotterdam: Balkema.

    Google Scholar 

  • Yingst, J.Y. (1982) Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic deposit-feeding holothurian. Estuarine, Coastal Shelf Sci. 14, 119–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, D., Moore, H.M. Tentacular diversity in deep-sea deposit-feeding holothurians: implications for biodiversity in the deep sea. Biodiversity and Conservation 6, 1487–1505 (1997). https://doi.org/10.1023/A:1018362319053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018362319053

Navigation