Skip to main content
Log in

The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.).

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Transfer of T-DNA from Agrobacterium tumefaciens and A. rhizogenes to cells of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) is demonstrated following the inoculation of immature embryos and immature embryo-derived callus. Agrobacterium T-DNA vectors containing the C1/Lc anthocyanin-biosynthesis regulatory genes, the gusA gene or a synthetic green fluorescent protein gene (sgfp-S65T) were constructed from original binary vectors. The visual T-DNA markers were used as cell-autonomous reporters of early Agrobacterium-mediated transformation events in the wheat and barley cells. This localization of the transformed cells revealed a non-random distribution throughout each embryo and callus piece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chilton, M.D., T.C. Currier, S.K. Farrand, A.J. Bendich, M.P. Gordon & E.W. Nester, 1974. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumours. Proc Nat Acad Sci USA 71: 3672–3676.

    Google Scholar 

  • Chiu, W.L., Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi & J. Sheen, 1996. Engineered GFP as a vital reporter in plants. Current Biology 6: 326–330.

    Google Scholar 

  • Chu, C.C. & R.D. Hill, 1988. An improved anther culture method for obtaining higher frequency of pollen embryoids in Triticum aestivum L. Plant Science 55: 175–181.

    Google Scholar 

  • Creissen, G., C. Smith, R. Francis, H. Reynolds & P. Mullineaux, 1990. Agrobacterium-and microprojectile-mediated viral DNA delivery into barley microspore-derived cultures. Plant Cell Reports 8: 680–683.

    Google Scholar 

  • Dale, P.J., M.S. Marks, M.M. Brown, C.J. Woolston, H.V. Gunn, P.M. Mullineaux, D.M. Lewis, J.M. Kemp, D.F. Chen, D.M. Gilmour & R.B. Flavell, 1989. Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant Science 63: 237–245.

    Google Scholar 

  • Goff, S.A., T.M. Klein, B.A. Roth, M.E. Fromm, K.C. Cone, J.P. Radicalle & V.L. Chandler, 1990. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO Journal 9: 2517–2522.

    Google Scholar 

  • Hansch, R., T. Koprek, R.R. Mendel & J. Schulze, 1995. An improved protocol for eliminating endogenous β-glucuronidase background in barley. Plant Science 105: 63–69.

    Google Scholar 

  • Hess, D., K. Dressler & R. Nimmrichter, 1990. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Science 7: 233–244.

    Google Scholar 

  • Hiei, Y., S. Ohta, T. Komari & T. Kumashiro, 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal 6: 271–282.

    Google Scholar 

  • Hoekema, A., P.R. Hirsch, P.J.J. Hooykaas & R.A. Schilperoort, 1983. A binary vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Google Scholar 

  • Hood, E.E., G.L. Helmer, R.T. Fraley & M.D. Chilton, 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology 168: 1291–1301.

    Google Scholar 

  • Hooykaas, P.J.J., P.M. Klapwijk, M.P. Nuti, R.A. Schilperoort & A. Rorsch, 1977. Transfer of the Agrobacterium tumefaciens Tiplasmid to avirulent agrobacteria and to Rhizobium ex planta. Journal of General Microbiology 98: 477–484.

    Google Scholar 

  • Horsch, R.B., J.E. Fry, N.L. Hoffman, D. Eichholtz, S.G. Rogers & R.T. Fraley, 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Horsch, R.B. & H.J. Klee, 1986. Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci. USA 83: 4428–4432.

    Google Scholar 

  • Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari & T. Kumashiro, 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology. 14: 745–750.

    Google Scholar 

  • Jefferson, R.A., 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Reptr 5: 387–405.

    Google Scholar 

  • Klöti, A., V.A. Iglesias, J. Wunn, P.K. Burkhardt, S.K. Datta & I. Potrykus, 1993. Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Reports 12: 671–675.

    Google Scholar 

  • Kott, L.S., M. Howarth, R.L. Peterson, K.J. Kasha, 1985. Light and electron microscopy of callus initiation from haploid barley embryos. Can J Bot 63: 1801–1805.

    Google Scholar 

  • Langridge, P., R. Brettschneider, P. Lazzeri & H. Lörz, 1992. Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant Journal 2: 631–638.

    Google Scholar 

  • Ludwig, S.R., L.F. Habera, S.L. Dellaporta & S.R. Wessler, 1989. A regulatory gene as a novel visible marker for maize transformation. Proc Natl Acad Sci USA 86: 7092–7096.

    Google Scholar 

  • McCormac, A.C., M.C. Elliott & D.F. Chen, 1997a. pBECKS: a flexible series of binary vectors for Agrobacterium-mediated plant transformation. Molecular Biotechnology 11: 1369–1376.

    Google Scholar 

  • McCormac, A.C., M.C. Elliott & D.F. Chen, 1997b. Asimplemethod for the production of highly competent cells of Agrobacterium for transformation via electroporation. Molecular Biotechnology. In Press.

  • Mooney, P.A., P.B. Goodwin, E.S. Dennis & D.J. Llewellyn, 1991. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell and Tissue Organ Culture 2: 209–218.

    Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15: 473–497.

    Google Scholar 

  • Narasimhulu, S.B., X.B. Deng, R. Sarria & S.B. Gelvin, 1996. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8: 873–886.

    Google Scholar 

  • Quattrochio, F., J.F. Wing, H.T.C. Leppen, J.N.M. Mol & R.E. Koes, 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5: 1497–1512.

    Google Scholar 

  • Sheen, J., S. Hwang, Y. Niwa, H. Kobayashi & D.W. Galbraith, 1995. Green-fluorescent protein as a new vital marker in plant cells. Plant Journal 8: 777–784.

    Google Scholar 

  • Tingay, S., D. McElroy, R. Kalla, S. Fieg, M. Wang, S. Thornton & R. Brettell, 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant Journal 11: 1369–1376.

    Google Scholar 

  • van der Graaff, E., A. Den Dulk-Ras & P.J.J. Hooykaas, 1996. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants. Plant Molecular Biology 31: 677–681.

    Google Scholar 

  • Vancanneyt, G., R. Schmidt, A. O'Conner-Sanchez, L. Willmitzer & M. Rocha-Sosa, 1990. Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250.

    Google Scholar 

  • Zambryski P., 1992. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43: 465–490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormac, A.C., Wu, H., Bao, M. et al. The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.).. Euphytica 99, 17–25 (1998). https://doi.org/10.1023/A:1018303102488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018303102488

Navigation