Skip to main content
Log in

A Method to Determine the Dimension of Long-Time Dynamics in Multi-Scale Systems

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Modeling reaction kinetics in a homogeneous medium usually leads to stiff systems of ordinary differential equations the dimension of which can be large. The problem of determination of the minimal number of phase variables needed to describe the characteristic behavior of large scale systems is extensively addressed in current chemical kinetics literature from different point of views. Only for a few of these approaches there exists a mathematical justification. In this paper we describe and justify a procedure allowing to determine directly how many and which state variables are essential in a neighborhood of a given point of the extended phase space. This method exploits the wide range of characteristic time-scales in a chemical system and its mathematical justification is based on the theory of invariant manifolds. The procedure helps to get chemical insight into the intrinsic dynamics of a complex chemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Heard, M.J. Pilling and A.S. Tomlin, Mechanism reduction techniques applied to tropospheric chemistry, Atmos. Envir. 32 (1998) 1059–1073.

    Google Scholar 

  2. R. Lowe and A. Tomlin, Low-dimensional manifolds and reduced chemical models for troposcopic chemistry simulations, Atmos. Envir. 34 (2000) 2425–2436.

    Google Scholar 

  3. K.R. Schneider and T. Wilhelm, Model reduction by extended quasi-steady state approximation, J. Math. Biol. 40 (2000) 443–450.

    Google Scholar 

  4. L.A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol. 50 (1988) 579–593.

    Google Scholar 

  5. L.A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, SIAM Rev. 31 (1989) 446–477.

    Google Scholar 

  6. R. Heinrich and S. Schuster, The Regulation of Cellular Systems (Chapman and Hall, New York, 1996).

    Google Scholar 

  7. U.Maas, Automatische Reduktion von Reaktionsmechanismen zur Simulation reaktiver Strömungen, Institut für technische Verbrennung, Habilitation, Univ. Stuttgart (1993).

  8. U. Maas and S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, J. Combust. Flame 88 (1992) 239–264.

    Google Scholar 

  9. D. Schmidt, T. Blasenbrey and U. Mass, Intrinsic low-dimensional manifolds of strained and unstrained flames, Combust. Theory Model. 2 (1998) 135–152.

    Google Scholar 

  10. R. Atkinson, A.C. Lloyd and L. Winges, An updated chemical mechanism for hydrocarbon /NOx/SO2 photooxidations suitable for inclusion in atmospheric simulation models, Atmos. Envir. 16 (1982) 1341–1355.

    Google Scholar 

  11. M.W. Gery, G.Z. Whitten, J.P. Killus and M.C. Dodge, A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res. 94 (1989) 12,925–12,956.

    Google Scholar 

  12. T. Turányi, Sensitivity analysis of complex kinetic systems, Tools and applications, J. Math. Chem. 5 (1990) 203–248.

    Google Scholar 

  13. T. Turányi, Parameterisation of reaction mechanism using orthonormal polynomials, Comput. Chem. 18 (1994) 45–54.

    Google Scholar 

  14. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979) 53–98.

    Google Scholar 

  15. V.V. Strygin and V.A. Sobolev, Splitting of Motion by Means of Integral Manifolds (Nauka, Moscow, 1988) (in Russian).

    Google Scholar 

  16. P. Deuflhard and J. Heroth, Dynamic dimension reduction in ODE models, in: Scientific Computing in Chemical Engineering, ed. F. Keil (Springer-Verlag, Berlin, 1996) pp. 29–43.

    Google Scholar 

  17. P. Duchêne and P. Rouchon, Kinetic scheme reduction, attractive invariant manifold and slow/fast dynamical systems, Chem. Engrg. Sci. (submitted).

  18. J.D. Murray, Mathematical Biology, Biomathematics, Vol. 19 (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  19. R.J. Field, P.G. Hess, L.V. Kalachev and S. Madronich, Characterization of oscillation and a perioddoubling transition to chaos in a simple model of tropospheric chemistry, J. Geophys. Res. 106 (2001) 7553–7565.

    Google Scholar 

  20. L.V. Kalachev and R.J. Field, Absence of multiple steady states and a transition from steady state to monotonic growth behavior of [CO] and [O3] in a simple, nonlinear, oscillatory model of tropospheric photochemistry, Geophys. Res. Lett. 25 (1998) 2709–2715.

    Google Scholar 

  21. G.H. Golub and C.F. van Loan, Matrix Computations(Johns Hopkins University Press, Baltimore, 1989).

    Google Scholar 

  22. F. Brauer and J.A. Nohel, Qualitative Theory of Ordinary Differential Equations(Benjamin, New York, 1969).

    Google Scholar 

  23. K.R. Schneider, Relaxation oscillations in systems with different time-scales, in: Proc.Conf.Equadiff.VII Prague 1989, Teubner Texte Mathematik 118 (1991) 114–117.

    Google Scholar 

  24. K.R. Schneider, Relaxation oscillations and singularly perturbed autonomous differential systems, in: Proc.Int.Conf.Diff.Equs.Appl.Rousse 1989(1991) pp. 135–147.

  25. P. Hess and S. Madronich, On tropospheric chemical oscillations, J. Geophys. Res. 102 (1997) 15,949–15,965.

    Google Scholar 

  26. M.C. Krol and D. Poppe, Nonlinear dynamics in atmospheric chemistry rate equations, J. Atmos. Chem. 29 (1998) 1–16.

    Google Scholar 

  27. R.W. Stewart, Dynamics of the low and high NOx transition in a simplified tropospheric photochemical model, J. Geophys. Res. 100 (1995) 8929–8943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handrock-Meyer, S., Kalachev, L. & Schneider, K. A Method to Determine the Dimension of Long-Time Dynamics in Multi-Scale Systems. Journal of Mathematical Chemistry 30, 133–160 (2001). https://doi.org/10.1023/A:1017960802671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017960802671

Navigation