Skip to main content
Log in

Role of Complex Formation in Mass Transport during Nickel Electrodeposition from Low-Concentration Formate–Chloride Electrolytes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel electrodeposition from 0.2 M formate–chloride solutions is studied. Depending on electrolyte pH0, the highest current density of the electrodeposition of compact nickel deposits varies from 3 (pH03.5) to 40 A dm–2(pH02.0). With the current efficiency for nickel taken into account, this corresponds to nickel deposition rates of 3 to 25 A dm–2. One of the reasons for the high permissible current densities is good buffer properties of the electrolyte. Computer calculations show that the considerable acceleration of the nickel electrodeposition is due to mass transport accelerated by the formation of complex [NiL]+cations. The complex formation also affects the intensity of interaction between nickel and hydrogen ions transported to the cathode. The current by nickel increases due to the participation of formic acid molecules in the hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kudryavtsev, N.T., Gal'vanotekhnika (Electroplating), Moscow: Gizlegprom, 1940.

    Google Scholar 

  2. Kudryavtsev, N.T., Korol'kova, O.M., and Fedurkin, V.V., Zh. Prikl. Khim. (Leningrad), 1949, vol. 22, p. 586.

    Google Scholar 

  3. Kudryavtsev, N.T., Elektroliticheskie pokrytiya metallami (Electroplating with Metals), Moscow: Khimiya, 1979.

    Google Scholar 

  4. Doktorina, S.V. and Kudryavtsev, N.T., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1960, vol. 3, p. 497.

    Google Scholar 

  5. Kudryavtsev, N.T., Tsupak, T.E., and Przyluski, J., Zashch. Met., 1967, vol. 3, p. 447.

    Google Scholar 

  6. Kudryavtsev, N.T., Tsupak, T.E., Mekhtiev, M.A., and Marchenkov, Yu.M., Zashch. Met., 1977, vol. 13, p. 618.

    Google Scholar 

  7. Kudryavtsev, N.T., Tsupak, T.E., Bud'ko, V.P., and Metkhiev, M.A., Tr. Mosk. Khim.-Tekhnol. Inst. im. D.I. Mendeleeva, 1977, no. 95, p. 42.

  8. Kudryavtsev, N.T., Loseva, E.I., Tsupak, T.E., and Mel'nikov, V.V., Izv. Akad. Nauk Latv. SSR, Ser. Khim., 1980, no. 3, p. 301.

  9. Tsupak, T.E., Bek, R.Yu., Loseva, E.I., and Borodikhina, L.I., Elektrokhimiya, 1982, vol. 18, p. 86.

    Google Scholar 

  10. Bek, R.Yu., Tsupak, T.E., Nguen Zui Shi, and Borodikhina, L.I., Elektrokhimiya, 1985, vol. 21, p. 1346.

    Google Scholar 

  11. Stability Constants of Metal-Ion Complexes. Part B: Organic Ligands, Perrin, D.D., Comp., Canberra: Australian Natl. Univ., 1979, IUPAC Chemical Data Series no. 22, p. 286.

  12. P ibil, R., Komplexony v chemické analyse, Praha: Nakl. eskoslovenske Akademie Ved., 1957.

    Google Scholar 

  13. Bek, R.Yu., Tsupak, T.E., Nguen Zui Shi, and Borodikhina, L.I., Elektrokhimiya, 1985, vol. 21, p. 1190.

    Google Scholar 

  14. Tsupak, T.E., Kopteva, N.I., Bek, R.Yu., and Shuraeva, L.I., Elektroosazhdenie metallov i splavov (Electrodeposition of Metals and Alloys), Moscow: MKhTI, 1991, p. 68.

    Google Scholar 

  15. Ibl, N. and Venczel, J., Metalloberflaeche, 1970, vol. 24, p. 365.

    Google Scholar 

  16. Morris, D.F., Reed, G.L., Stabre, D.N., and Waters, D.N., J. Inorg. Nucl. Chem., 1965, vol. 27, p. 337.

    Google Scholar 

  17. Bek, R.Yu. and Tsupak, T.E., Elektrokhimiya, 1987, vol. 23, p. 560.

    Google Scholar 

  18. Kharkats, Yu.I., J. Electroanal. Chem., 1979, vol. 105, p. 97.

    Google Scholar 

  19. Kharkats, Yu.I., Elektrokhimiya, 1978, vol. 14, p. 1716.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsupak, T.E., Bek, R.Y., Dzie Wei et al. Role of Complex Formation in Mass Transport during Nickel Electrodeposition from Low-Concentration Formate–Chloride Electrolytes. Russian Journal of Electrochemistry 37, 730–734 (2001). https://doi.org/10.1023/A:1016724919628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016724919628

Keywords

Navigation