Skip to main content
Log in

A Novel in Vitro Delivery System for Assessing the Biological Integrity of Protein upon Release from PLGA Microspheres

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The development of a novel in vitro system is required to assess the stability and release kinetics of a protein microsphere formulation used for drug delivery to the brain.

Methods. Microspheres containing lysozyme as model protein were prepared using a (w/o/w) emulsion-solvent evaporation process. Both the active and total (active + inactive) encapsulation efficiencies and release profiles were determined. The biologic activity of lysozyme was measured using bacterial cell lysis; total protein content was measured using a 125I-radiolabel. A novel in vitro apparatus was developed to determine kinetics over a sustained time period (>30 days).

Results. The microencapsulation technique allowed an entrapment of active lysozyme at 80 ± 4% and a sustained (>42 days) in vitro release. The kinetics study showed that the novel in vitro system was able to detect the release of low amounts (ng) of protein. To improve the stability of the protein within microspheres and allow the release of biologically active lysozyme, a basic additive ( Mg(OH)2 ) was successfully encapsulated.

Conclusions. This novel in vitro system was appropriate to study protein microsphere release kinetics. In addition, the model is cost-effective and mimes brain physiological conditions more closely than previous models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Shibayama and H. Koizumi. Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues.Am. J. Pathol. 148:1807–1818 (1996).

    Google Scholar 

  2. G. Crotts and T. G. Park. Protein delivery from poly(lactic-coglycolic acid) biodegradable microspheres: release kinetics and stability issues. J. Microencapsulation 15:699–713 (1998).

    Google Scholar 

  3. P. A. Burke. Controlled release protein therapeutics; effects of process and formulation on stability. In D. L. Wise, L. Brannon-Peppas, A. Klibanov, A. Mikos, N. A. Peppas, D. J. Trantolo, G. E. Wnek, and M. J. Yaszemski (eds), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker, Inc., New York, pp.661–692 (2000).

    Google Scholar 

  4. M. van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000).

    Google Scholar 

  5. T. G. Park, W. Lu, and G. Crotts. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D-L-lactic acid-coglycolic acid) microspheres. J. Control. Release 33:211–222 (1995).

    Google Scholar 

  6. K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-coglycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106 (2000).

    Google Scholar 

  7. B. R. Conway and H. O. Alpar. Double emulsion microencapsulation of proteins as model antigens using polylactide polymers: effect of emulsifier on the microspheres characteristics and release kinetics. Eur. J. Pharm. Biopharm. 42:42–48 (1996).

    Google Scholar 

  8. M. Igartua, M. Hernandez, A. Esquisabel, A. R. Gascon, M. B. Calvo, and J. L. Pedraz. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. J. Microencapsulation 14:349–356 (1997).

    Google Scholar 

  9. J.Yang and J.L. Cleland. Factors affecting the in vitro release of rhIFN ? from PLGA microspheres. J. Pharm. Sci. 86:908–914 (1997).

    Google Scholar 

  10. J. M. Péan, M. C. Venier-Julienne, F. Boury, P. Menei, B. Denizot, and J. P. Benoît. NGF release from poly(D,L-lactide-coglycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. J. Control. Release 56:175–187 (1998).

    Google Scholar 

  11. J. L. Cleland and A. J. S. Jones. Stable formulations of rhGH and IFN-? for microencapsulation in biodegradable microspheres. Pharm. Res. 13:1464–1475 (1996).

    Google Scholar 

  12. J. Herrmann and R. Bodmeier. Biodegradable, somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. Eur. J. Pharm. Biopharm. 45:75–82 (1998).

    Google Scholar 

  13. S. Takada, Y. Uda, H. Toguchi, and Y. Ogawa. Application of a spray-drying technique in the production of TRH-containing injectable sutained-release microparticles of biodegradable polymers. PDA J. Pharm. Sci. Technol. 49:180–184 (1995).

    Google Scholar 

  14. L.F.H Lin. D.H. Doherty, J.D. Lile, S. Bektesh, and F. Collins. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132 (1993).

    Google Scholar 

  15. H. A. McKenzie and F. W. White. Determination of lysozyme activity at low levels with emphasis on the milk enzyme. Anal. Biochem. 157:367–374 (1986).

    Google Scholar 

  16. W. Wang. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129–188 (1999).

    Google Scholar 

  17. H. K. Kim and T.G Park. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotechnol. Bioeng. 65:659–667 (1999).

    Google Scholar 

  18. P. J. Fraker and J.C Speck. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem. Biophys. Res. Comm. 80:849–857 (1978).

    Google Scholar 

  19. J. M. Péan, M. C. Venier-Julienne, R. Filmon, M. Sergent. R Phan-Tan-Luu, and J.P. Benoît. Optimization of HSA and NGF encapsulation yield in PLGA microparticles. Int. J. Pharm. 166: 105–115 (1998).

    Google Scholar 

  20. J. M. Péan, F. Boury, M. C. Venier-Julienne, P. Menei, J. E. Proust, and J. P. Benoît. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres? Pharm. Res. 16:1294–1299 (1999).

    Google Scholar 

  21. R. Ghaderi and J. Carlfors. Biologic activity of lysozyme after entrapment in poly(D,L-lactide-co-glycolide)-microspheres. Pharm. Res 14:1556–1562 (1997).

    Google Scholar 

  22. J. M. Bezemer, R. Radersma, D. W. Grijpma, P. J. Dijkstra, J. Feijen, and C. A. van Blitterswijk. Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylene terephthalate) matrices. J. Control. Release 64:179–192 (2000).

    Google Scholar 

  23. T. G. Park, H. Y. Lee, and Y. S. Nam. A new preparation method for protein loaded poly(D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J. Control. Release 55:181–191 (1998).

    Google Scholar 

  24. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–918 (1989).

    Google Scholar 

  25. E. T. Duenas and J. Yang. A.J.S Jones and J.L. Cleland. Development of a new in vitro release method for microencapsulated proteins. Proc. Control. Release Soc. 22:516–517 (1995).

    Google Scholar 

  26. J. L. Cleland, E. Duenas, A. Daugherty, M. Marian, J. Yang, M. Wilson, A. C. Celniker, A. Shahzamani, V. Quarmby, H. Chu, V. Mukku, A. Mac, M. Roussakis, N. Gillette, B. Boyd, D. Yeung, D. Brooks, Y.-F. Maa, C. Hsu, and A. J. S. Jones. Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J. Control. Release 49: 193–205 (1997).

    Google Scholar 

  27. G. Zhu and S. P. Schwendeman. Stabilization of proteins encapsulated in cylindral PLGA implants: mechanisms of stabilization by basic additives. Pharm. Res. 17:351–357 (2000).

    Google Scholar 

  28. B. R. Conway and H. O. Alpar. Single and coencapsulation of interferon-? in biodegradable PLA microspheres for optimization of multicomponent vaccine delivery vehicles. Drug Delivery 4:75–80 (1997).

    Google Scholar 

  29. Y. S. Nam, S. H. Song, J. Y. Choi, and T. G. Park. Lysozyme microencapsulation within biodegradable PLGA microspheres: urea effect on protein release stability. Biotechnol. Bioeng. 70:270–277 (2000).

    Google Scholar 

  30. G. Zhu, S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotechnology 18:52–57 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Benoît.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert-Pouëssel, A., Bibby, D.C., Venier-Julienne, MC. et al. A Novel in Vitro Delivery System for Assessing the Biological Integrity of Protein upon Release from PLGA Microspheres. Pharm Res 19, 1046–1051 (2002). https://doi.org/10.1023/A:1016482809810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016482809810

Navigation