Skip to main content
Log in

Polylactide Fibres: Fabrication, Properties, Use, Prospects. A Review

  • Published:
Fibre Chemistry Aims and scope

Abstract

The analysis of data on the fabrication, structure, and properties of polylactide and polylactide fibres will allow drawing a conclusion concerning the promise of using them for production of high-quality textiles and articles for domestic, medical, sanitary-hygienic, and industrial applications. The existence of a renewable raw material base (plant stock), the use of biotechnology for fabrication of the monomer (lactic acid and its dilactide), and the simple technology for fabrication and melt spinning of the polymer show that production of these fibres will be economically feasible. Manufacture of these fibres does not involve complicated environmental problems due to the nontoxicity of the initial, intermediate, and finished products, and the possibility of recycling and biodegradation in the environment. As oil, coal, and gas deposits are being exhausted, polylactide fibres could become a promising large-tonnage variety of fibre. In this respect, it is necessary to develop comprehensive research to create optimum processes for production of lactic acid, polylactide, and polylactide fibres in Russia and to create industrial plants. With a wide spectrum of applications, polylactide fibres can be considered to be at the same level as other chemical fibres. They will not directly compete with existing chemical fibres, although they can be successfully used in place of or combined with them in many cases. At the same time, they have their own niche because of their specific properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. E. Perepelkin, Khim. Volokna, No. 5, 3–16; No. 6, 3–13 (2000).

  2. I. I. Shamolina, Khim. Volokna, No. 1, 3–10 (1997).

  3. M. Matsui, Chem. Fibers Intern., 46,No. 6, 318–319 (1996).

    Google Scholar 

  4. Chem. Fibers Intern., 48,No. 2, 89 (1998); “Cargill Dow polymers: first commercial PLA plant for fibres,” Man-made Year Book. Chem. Fibers Intern., 6 (2000).

  5. M. Dartee, J. Lunt, and A. Shafer, Chem. Fibers Intern., 50,No. 6, 546–551 (2000).

    Google Scholar 

  6. R. Hagen, “New process to reduce cost price of polylactide,” Man-made Year Book. Chem. Fibers Intern., 6–8 (2001).

  7. M. Dartee, J. Lunt, and A. Shafer, “Naturworks PLA sustainable performance fibre,” Man-made Year Book. Chem. Fibers Intern., 29–31 (2001).

  8. K. Yamanaka, Chem. Fibers Intern., 49,No. 6, 501–506 (1999).

    Google Scholar 

  9. N. S. Egorov (ed.), Industrial Microbiology [in Russian], Vysshaya Shkola, Moscow (1989).

    Google Scholar 

  10. L. M. Vorob'eva, Industrial Microbiology [in Russian], Izd. MGU, Moscow (1989).

    Google Scholar 

  11. N. P. Elinov, Principles of Microbiology [in Russian], Nauka, St. Petersburg (1995).

    Google Scholar 

  12. V. V. Korshak and S. V. Vinogradova, Heterochain Polyesters [in Russian], Izd. Akad. Nauk SSSR, Moscow (1958).

    Google Scholar 

  13. H. Mark and G. S. Whitby (eds.), Collected Papers of Wallace Hume Carothers on High Polymeric Substances, Interscience, New York (1940).

    Google Scholar 

  14. H. Klare, Geschichte der Chemiefasern, Akademie Verlag, Berlin (1985).

    Google Scholar 

  15. A. M. Bezborodov, “Fermentation,” in: Chemical Encyclopedia [in Russian], Vol. 3, Izd. BRE, Moscow (1988), pp. 608–611.

    Google Scholar 

  16. K. Yamanaka, in: Proceedings of the 38th Intern. Man-made Fibres Congress, Dornbirn, September 15–17, 1999, OECHI Publ., Vienna (1999), pp. 1–10.

    Google Scholar 

  17. J. Lunt, in: Proceedings and Abstracts of Posters, International Conference “Fibres and Textiles for the Future,” Tampere University of Technology, Tampere (August 16–17, 2001).

    Google Scholar 

  18. A. I. Dytnerskii, “Membrane separation,” in: Chemical Encyclopedia [in Russian], Vol. 3, Izd. BRE, Moscow (1992), pp. 38–45.

    Google Scholar 

  19. Yu. A. Treger, “Lactic acid,” in: Chemical Encyclopedia [in Russian], Vol. 3, Izd. BRE, Moscow (1992), pp. 130–131.

    Google Scholar 

  20. C. H. Holten, Lactic Acid. Properties and Chemistry/Lactic Acid and Derivatives, Weisheim (1971).

  21. V. S. Livshits, “Polylactide,” in: Chemical Encyclopedia [in Russian], Vol. 2, Izd. BSE, Moscow (1974), p. 874.

    Google Scholar 

  22. A. K. Khomyakov, “Polylactide,” in: Chemical Encyclopedia [in Russian], Vol. 3, Izd. BRE, Moscow (1992), pp. 1262–1263.

    Google Scholar 

  23. “Glycolic acid,” in: Chemical Encyclopedia [in Russian], Vol. 1, Izd. BRE, Moscow (1988), pp. 1132–1133.

  24. A. K. Khomyakov, “Polyglycolide,” in: Chemical Encyclopedia [in Russian], Vol. 3, Izd. BRE, Moscow (1992), pp. 1240–1241.

    Google Scholar 

  25. B. L. Biber and I. L. Kuz'mina, Khim. Volokna, No. 3, 53–57 (1991).

  26. F. Fourne, Synthetic Fibers, Carl Henser Verlag, Munich-Vienna (1999).

    Google Scholar 

  27. N. L. Kuz'mina, B. L. Biber, et al., Problems in Production and Use of Surgical Sutures [in Russian], Ser. Prom. Khim. Volokon, NIITEKhim, Moscow (1989).

    Google Scholar 

  28. M. Dauner and H. Planck, in: Proceedings and Abstracts of Posters, International Conference “Fibres and Textiles for the Future, Tampere, August 16–17, 2001, Tampere University of Technology (2001), pp. 147–158.

  29. V. V. Shevchenko, N. A. Plate, et al., in: Preprints of the International Symposium on Chemical Fibers [in Russian], Vol. %, Kalinin (1986), pp. 138–142.

  30. R. Shishoo, in: Proceedings and Abstracts of Posters, International Conference “Fibres and Textiles for the Future, Tampere, August 16–17, 2001, Tampere University of Technology (2001), pp. 25–35.

  31. K. E. Perepelkin, Structure and Properties of Fibres [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  32. K. E. Perepelkin, “Chemical fibres,” in: Chemical Encyclopedia [in Russian], Vol. 1, Izd. BRE, Moscow (1988), pp. 802–807.

    Google Scholar 

  33. K. E. Perepelkin, Khim. Volokna, No. 5, 8–19 (2001).

  34. V. G. Lappo, T. V. Selavri, and E. I. Semenko, “Sanitary-hygienic characteristics of polymer materials,” in: Encyclopedia of Polymers [in Russian], Vol. 3, Izd. BSE, Moscow (1977), pp. 357–370.

    Google Scholar 

  35. N. I. Nikitin, Wood Chemistry [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1951).

    Google Scholar 

  36. B. S. Sapotnitskii, “The hydrolysis plant,” in: Chemical Encyclopedia [in Russian], Vol. 1, Izd. BRE, Moscow (1988), pp. 1100–1103.

    Google Scholar 

  37. A. I. Osadchaya, V. S. Polgorskii, et al., in: Biotechnological Utilization of Crop Wastes Podgorskii and V. N. Ivanov (eds.), Naukova Dumka, Kiev (1990).

    Google Scholar 

  38. V. I. Sharkov, S. A. Sapotninskii, et al., Hydrolysis Plant Technology [in Russian], Lesnaya Prom., Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Polylactide Fibres: Fabrication, Properties, Use, Prospects. A Review. Fibre Chemistry 34, 85–100 (2002). https://doi.org/10.1023/A:1016359925976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016359925976

Keywords

Navigation