Skip to main content
Log in

Contribution of Temperature Modulated DSC® to the Study of the Molecular Mobility in Glass Forming Pharmaceutical Systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature modulated differential scanning calorimetry (MDSC®) technique has been used to characterise the low frequency molecular mobility of indomethacin and maltitol just above their respective calorimetric glass transition temperatureT g. Analysis has been made using the concept of complex specific heat. Spectroscopic information are thus obtained through the temperature dependence of the isochronal real and imaginary parts C′ and C″. This gives access to the fragility index m and the stretched exponent β. The comparison with dielectric spectroscopy has been performed to check the coherence of spectroscopic information. Measurements on maltitol enable to demonstrate the useful complementarity of the technique when the low frequencies dielectric relaxations are occulted by the presence of conductors default.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Hancock and G. Zografi, J. Pharm. Sci., 86 (1997) 1.

    Article  CAS  Google Scholar 

  2. B. C. Hancock, S. L. Shamblin and G. Zografi, Pharm. Res., 12 (1995) 799.

    Article  CAS  Google Scholar 

  3. S. L. Shamblin, X. Tang, L. Chang, B. C. Hancock and M. J. Pikal, J. Phys. Chem., 103 (1999) 4113.

    CAS  Google Scholar 

  4. O. Bustin and M. Descamps, J. Chem. Phys., 110 (1999) 1.

    Article  Google Scholar 

  5. J. M. Hutchinson, Thermochim. Acta, 324 (1998) 165.

    Article  CAS  Google Scholar 

  6. J. E. K. Schawe, Thermochim. Acta, 260 (1995) 1.

    Article  CAS  Google Scholar 

  7. J. E. K. Schawe, Thermochim. Acta, 261 (1995) 183.

    Article  CAS  Google Scholar 

  8. K. J. Jones, I. Kinshott, M. Reading, A. A. Lacey, C. Nikopoulos and H. M. Pollock, Thermochim. Acta, 304/305 (1997) 187.

    Article  CAS  Google Scholar 

  9. J. E. K. Schawe and G. W. H. Höhne, Thermochim. Acta, 287 (1997) 213.

    Article  Google Scholar 

  10. B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, 238 (1994) 277.

    Article  CAS  Google Scholar 

  11. J. E. K. Schawe and W. Winter, Thermochim. Acta, 298 (1997) 9.

    Article  CAS  Google Scholar 

  12. Z. Jiang, C. T. Imrie and J. M. Hutchinson, Termochim. Acta, 315 (1998) 1.

    Article  CAS  Google Scholar 

  13. S. Weyer, A. Hensel and C. Schick, Termochim. Acta, 304/305 (1997) 267.

    Article  CAS  Google Scholar 

  14. L. Carpentier, O. Bustin and M. Descamps, J. Phys. D: Appl. Phys., 35 (2002) 402.

    Article  CAS  Google Scholar 

  15. N. O. Birge and S. R. Nagel, Phys. Rev. Lett., 54 (1985) 2674. N. O. Birge, Phys. Rev. B, 34 (1986) 1631.

    Article  CAS  Google Scholar 

  16. M. Yoshioka, B. C. Hancock and G. Zografi, J. Pharm. Sci., 83 (1994) 1700.

    CAS  Google Scholar 

  17. E. Fukuoka, M. Makita and S. Yamamura, Chem. Pharm. Bull., 34 (1986) 4314.

    CAS  Google Scholar 

  18. M. Siniti, Etude thermodynamique des phénomènes de relaxation des matériaux vitreux. Caractérisation de l’état enthalpique d’un verre de polyol dans le domaine de la transition vitreuse, Ph. D. Thésis, Institut National des Sciences Appliquées de Lyon, 1995.

  19. R. Böhmer, K. L. Ngai, C. A. Angell and D. J. Plazeck, J. Chem. Phys., 99 (1993) 4201.

    Article  Google Scholar 

  20. C. A. Angell, J. of Res. of the National Institute of Standards and Technology, 102 (1997) 171.

    CAS  Google Scholar 

  21. V. Andronis and G. Zografi, Pharm. Res., 14 (1997) 410.

    Article  CAS  Google Scholar 

  22. V. Andronis and G. Zografi, Pharm. Res., 15 (1998) 835.

    Article  CAS  Google Scholar 

  23. R. Böhmer and C. A. Angell, Local and global relaxations in glass forming materials, in Disordered effects on relaxational processes, Springer-Verlag, Eds R. Richert and A. Blumen, 1994.

  24. J. K. Nielsen and J. C. Dyre, Phys. Rev. B, 54 (1996) 15754.

    Article  CAS  Google Scholar 

  25. R. Böhmer, E. Sanchez and C. A. Angell, J. Phys. Chem. B, 96 (1992) 9089.

    Article  Google Scholar 

  26. C.T. Moynihan, L. P. Boesch and N. L. Laberge, Phys. and Chem. of Glasses, 14 (1973) 122.

    CAS  Google Scholar 

  27. F. Z. Stickel, Untersuchung der dynamik in niedermolekularen flüssigkeiten mit dielektrischer spektroskopie, Verlag Shaker, Aachen 1995.

    Google Scholar 

  28. D. Q. M. Craig, Dielectric analysis of pharmaceutical systems, Taylor & Francis, 1995.

  29. R. He and D. Q. M. Graig, J. Pharm. Pharmacol., 53 (2001) 41.

    Article  Google Scholar 

  30. A. Faivre, L. David and J. Perez, J. Phys. II France, 11 (1997) 1635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Carpentier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpentier, L., Bourgeois, L. & Descamps, M. Contribution of Temperature Modulated DSC® to the Study of the Molecular Mobility in Glass Forming Pharmaceutical Systems. Journal of Thermal Analysis and Calorimetry 68, 727–739 (2002). https://doi.org/10.1023/A:1016080928333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016080928333

Navigation