Skip to main content
Log in

Route of Administration and Sex Differences in the Pharmacokinetics of Aspirin, Administered as Its Lysine Salt

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

One thousand milligrams of aspirin, as its lysine salt, was administered intravenously, orally, and intramuscularly to nine male and nine female young healthy adult volunteers. After intravenous injection mean (±SD) values of clearance, steady-state volume of distribution, and terminal half-life were 12.2 ± 2.2 ml/min/kg, 0.219 ± 0.042 liter/kg, and 15.4 ± 2.5 min, respectively, with no differences between males and females. Following oral administration aspirin was absorbed more quickly in females than in males (mean absorption times of 16.4 and 21.3 min, respectively) although the bioavailability, 54%, was the same in both groups. In contrast, following intramuscular administration, aspirin was absorbed more slowly in females than males (mean absorption times of 97 and 53 min, respectively) but again the bioavailability, 89%, was the same in both groups. The data suggest that in the female the intramuscular injection is going into fat. Salicylic acid concentration–time profiles showed a less pronounced sex difference and were comparable among the three routes of administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Lester, G. Lolli, and L. A. Greenberg. J. Pharmacol. Exp. Ther. 87:329–342 (1946).

    Google Scholar 

  2. M. Ali, J. W. D. McDonald, J. J. Thiessen, and P. E. Coates. Stroke 11:9–25 (1980).

    Google Scholar 

  3. The Canadian co-operative study group. N. Engl. J. Med. 299:53–59 (1978).

    Google Scholar 

  4. K. Kortilla, O. M. Pentti, and J. Auvinen. Br. J. Anaesth. 52:613–617 (1980).

    Google Scholar 

  5. W. J. Kweekel-De Vries, J. Spierdijk, H. Mattie, and J. M. H. Hermans. Br. J. Anaesth. 46:133–135 (1974).

    Google Scholar 

  6. M. Rowland and S. Riegelman. J. Pharm. Sci. 57:1313–1318 (1968).

    Google Scholar 

  7. H. Voss, V. Cöbel, C. Petrich, and J. Pütter. Klin. Wochenschr. 56:1119–1123 (1978).

    Google Scholar 

  8. B. E. Cham, D. Johns, F. Bochner, D. M. Imhoff, and M. Rowland. Clin. Chem. 25:1420–1425 (1979).

    Google Scholar 

  9. C. M. Metzler, G. L. Elfring, and A. J. McEwan. A Users Manual for NONLIN and Associated Programs, Upjohn, Kalamazoo, Mich., 1974.

    Google Scholar 

  10. M. Gibald and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  11. M. Von Hattingberg and D. Brockmeier. In G. Bozler and J. M. Van Rossum (eds.), Pharmacokinetics During Drug Development: Data Analysis and Evaluation Techniques, Gustav Fischer Verlag, Stuttgart, 1982, pp. 315–323.

    Google Scholar 

  12. D. P. Vaughan and M. Dennis. J. Pharm. Sci. 67:663–665 (1978).

    Google Scholar 

  13. C. H. Hull and N. H. Nie. SPSS Update 7–9, McGraw-Hill, New York, 1981, pp. 1–79.

    Google Scholar 

  14. C. Chatfield and A. J. Collins. Introduction to Multivariate Analysis, Chapman and Hall, London, 1980. p. 124.

    Google Scholar 

  15. D. F. Morrison. Multivariate Statistical Methods, 2nd ed., McGraw-Hill Kogakusha, Tokyo, 1976, pp. 150–153.

    Google Scholar 

  16. M. S. Roberts, P. A. Cossum, and D. Kilpatrick, N. Engl. J. Med. 312:1388–1389 (1985).

    Google Scholar 

  17. M. Rowland, S. Riegelman, P. A. Harris, and S. D. Sholkoff. J. Pharm. Sci. 16:379–385 (1972).

    Google Scholar 

  18. K. Wilson. Clin. Pharmacokin. 9:189–202 (1984).

    Google Scholar 

  19. P. C. Ho, E. J. Triggs, D. W. A. Bourne, and V. J. Heazlewood. Br. J. Clin. Pharmacol. 19:675–684 (1985).

    Google Scholar 

  20. S. L. Miaskiewicz, C. A. Shively, and E. S. Vessel. Clin. Pharmacol. Ther. 31:30–37 (1982).

    Google Scholar 

  21. M. Sechserova, T. Sechser, H. Raskova, J. Jecna, J. Elis, and J. Vanacek. Arzneim-Forsch (Drug Res.) 25:1581–1582 (1975).

    Google Scholar 

  22. Z. Trnavska and K. Trnavska. Eur. J. Clin. Pharmacol. 25:679–682 (1982).

    Google Scholar 

  23. A. Windorfer, W. Kuenzer, and R. Urbanek. Eur. J. Clin. Pharmacol. 7:227–231 (1974).

    Google Scholar 

  24. M. Booth, J. N. Hunt, J. M. Miles, and F. A. Murray. Lancet 1:657–659 (1957).

    Google Scholar 

  25. R. A. Vukovich, L. J. Brannick, A. A. Sugerman, and E. S. Neiss. Clin. Pharmacol. Ther. 18:215–220 (1975).

    Google Scholar 

  26. E. S. M. Modderman, F. W. H. M. Merkus, J. Zuidema, H. W. Hilber, and T. Warndorff. Int. J. Leprosy 51:359 (1983).

    Google Scholar 

  27. E. F. Evans, J. D. Proctor, M. J. Fratkin, J. Velandia, and A. J. Wasserman. Clin. Pharmacol. Ther. 17:44–47 (1974).

    Google Scholar 

  28. M. L. Schwartz, M. B. Meyer, B. G. Covino, R. M. Narang, V. Sethi, A. J. Schwartz, and P. Kamp. J. Clin. Pharmacol. 14:77–83 (1974).

    Google Scholar 

  29. W. P. Cockshott, G. T. Thompson, L. J. Howlett, and E. T. Seeley. N. Engl. J. Med. 307:356–358 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarons, L., Hopkins, K., Rowland, M. et al. Route of Administration and Sex Differences in the Pharmacokinetics of Aspirin, Administered as Its Lysine Salt. Pharm Res 6, 660–666 (1989). https://doi.org/10.1023/A:1015978104017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015978104017

Navigation