Skip to main content
Log in

The Effects of Formulation Additives on the Degradation of Freeze-Dried Ribonuclease A

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The stability of a freeze-dried model protein, ribonuclease A (RNase), was investigated under accelerated storage conditions at 45°C for time periods up to 60 days. Because RNase is a fairly stable molecule around pH 7, lyophilization was performed in phosphate buffers at pH 4.0 or 10.0 to accelerate degradation kinetics. Degradation was studied by measuring enzymatic activity, the concentrations of soluble monomeric RNase, soluble aggregated (polymerized) RNase, and insoluble aggregated RNase following reconstitution of the lyophilized material at different times. The presence of air in the vial headspace accelerated degradation in the solid state in all cases. When argon or nitrogen was employed in the headspace, degradation kinetics were reduced, implying that molecular oxygen was involved in the degradation process. This interpretation was supported by the observation that 0.05% (w/v) EDTA in the formulation prior to freeze-drying retarded RNase degradation dramatically. EDTA was believed to chelate cations which may have been introduced with the buffer salts in trace quantities sufficient to catalyze autoxidation reactions. Incorporation of antioxidants ascorbic acid (at pH 4.0) and POBN (a spin trap which could have functioned as an antioxidant at pH 10.0) accelerated the degradation of RNase and appeared, in both cases, to be involved in interactions with the protein molecules. Additionally, in the presence of the antioxidants RNase degradation appeared to be accelerated by light. Although there is strong support for the oxidative hypothesis, the possibility of other competing reactions cannot be discounted. These investigations demonstrate the importance of challenging the extrapolation of some of our well-established ideas concerning small molecule solution kinetics to macromolecules in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Crestfield, W. H. Stein, and S. Moore. Arch. Biochem. Biophys., Suppl 1:217–222 (1962).

    Google Scholar 

  2. E. V. Cheever and U. J. Lewis. Endocrinology 85:465–473 (1969).

    Google Scholar 

  3. T. A. Bewley and C. H. Li. Biochemistry 11:927–931 (1972).

    Google Scholar 

  4. M. W. Townsend and P. P. DeLuca. J. Parent. Sci. Technol. 42:190–199 (1988).

    Google Scholar 

  5. T. O. Oesterling and D. E. Guttman. J. Pharm. Sci. 53:1189–1192 (1964).

    Google Scholar 

  6. M. T. Lamy-Freund, F. N. Ferreira, and S. Schreier. J. Antibiot. 38:753–757 (1985).

    Google Scholar 

  7. N. Uri. In W. O. Lundberg (ed.), Autoxidation and Antioxidants, Vol. I, John Wiley & Sons, New York, 1961, pp. 91–104.

    Google Scholar 

  8. A. Martin, J. Swarbrick, and AA. Cammarata. Physical Pharmacy, 3rd Edition, Lea & Febiger, Philadelphia, 1983, p. 385.

    Google Scholar 

  9. J. M. Gutteridge. Pharm. J. 239:401–403 (1987).

    Google Scholar 

  10. E. S. Huyser. Free Radical Chain Reactions, John Wiley & Sons, New York, 1970, pp. 8–14.

    Google Scholar 

  11. N. Uri. In W. O. Lundberg (ed.), Autoxidation and Antioxidants, Vol. I, John Wiley & Sons, New York, 1961, p. 167.

    Google Scholar 

  12. K. E. Avis. In L. Lachman, H. A. Lieberman, and J. L. Kanig (eds.), The Theory and Practice of Industrial Pharmacy, Lea & Febiger, Philadelphia, 1970, p. 567.

    Google Scholar 

  13. K. B. Chakraborty and G. Scott. J. Polymer Sci. Polymer Lett. Ed. 22:553–558 (1984).

    Google Scholar 

  14. M. Kunitz. J. Biol. Chem. 164:563–568 (1946).

    Google Scholar 

  15. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. J. Biol. Chem. 193:265–275 (1951).

    Google Scholar 

  16. G. Schwarzenbach and K. Schwarzenbach. Helv. Chim. Acta 46:1390–1399 (1963).

    Google Scholar 

  17. G. Anderegg, F. L'Eplattenier, and G. Schwarzenbach. Helv. Chim. Acta 46:1400–1408 (1963).

    Google Scholar 

  18. W. P. Jencks. Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969, p. 133.

    Google Scholar 

  19. P. K. Nandi and D. R. Robinson. J. Am. Chem. Soc. 94:1299–1308 (1972).

    Google Scholar 

  20. P. H. von Hippel, L. Schack, and L. Karlson. Biochemistry 12:1256–1264 (1973).

    Google Scholar 

  21. A. Hamabata and P. H. von Hippel. Biochemistry 12:1264–1271 (1973).

    Google Scholar 

  22. R. A. Bradshaw, W. T. Schearer, and F. R. N. Gurd. J. Biol. Chem. 243:3817–3825 (1968).

    Google Scholar 

  23. R. A. Bradshaw and T. Peters, Jr. J. Biol. Chem. 244:5582–5589 (1969).

    Google Scholar 

  24. C. F. Shaw, III, N. A. Schaeffer, R. C. Elder, M. K. Eidness, J. M. Trooster, and G. H. M. Calis. J. Am. Chem. Soc. 106:3511–3521 (1984).

    Google Scholar 

  25. B. Halliwell and J. M. C. Gutteridge. Arch. Biochem. Biophys. 246:501–514 (1986).

    Google Scholar 

  26. N. Uri. In W. O. Lundberg (ed.), Autoxidation and Antioxidants, Vol. I, John Wiley & Sons, New York, 1961, p. 164.

    Google Scholar 

  27. L. Horner. In W. O. Lundberg (ed.), Autoxidation and Antioxidants, John Wiley & Sons, New York, 1961, pp. 210–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Townsend, M.W., Byron, P.R. & DeLuca, P.P. The Effects of Formulation Additives on the Degradation of Freeze-Dried Ribonuclease A. Pharm Res 7, 1086–1091 (1990). https://doi.org/10.1023/A:1015959604616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015959604616

Navigation