Skip to main content
Log in

“On–Off” Thermocontrol of Solute Transport. I. Temperature Dependence of Swelling of N-Isopropylacrylamide Networks Modified with Hydrophobic Components in Water

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The swelling in water, as a function of temperature, of two series of N-isopropylacrylamide (NIPA Am) polymer networks was studied. In the first series, n-butylmethacrylate (BMA) was copolymerized with NIPA Am, and in the second, polytetramethylene ether glycol (PTMEG) was incorporated into NIPAAm network as a chemically independent interpenetrating network. With increasing BMA content in the poly(NIPAAm-co-BMA) network, the gel collapse point was lowered and the gels deswelled in a more gradual manner with increasing temperature. In the interpenetrating polymer networks (IPN) system, the gel collapse point was not significantly changed by the amount of incorporated PTMEG. In DSC thermograms of swollen samples, the shape and onset temperature of the endothermic peak corresponded to the gel deswelling behavior and gel collapse point. The temperature dependence of equilibrium swelling in water was shown to be a function of the gel composition in both network series. The synthesized networks formed a dense surface layer as the temperature increased past the gel collapse point. This dense layer retarded water efflux and thereby resulted in water pockets at the membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Mazer. Pharmacokinetic and pharmacodynamic aspects of polypeptide delivery. J. Control. Rel. 11:343–356 (1990).

    Google Scholar 

  2. J. Kost, K. W. Leong, and R. Langer. Ultrasonic controlled polymeric delivery. Proc. Int. Symp. Control. Rel. Bioact. Mater. 10:84–85 (1983).

    Google Scholar 

  3. Y. H. Bae, T. Okano, and S. W. Kim. Thermo-sensitive polymers as on-off switches for drug release. Makromol. Chem. Rapid Commun. 8:481–485 (1987).

    Google Scholar 

  4. S. R. Eisenberg and A. J. Grodzinsky. Electrically modulated membrane permeability. J. Membr. Sci. 19:173–194 (1984).

    Google Scholar 

  5. P. I. Freeman and J. S. Rowlinson. Lower critical points in polymer solutions. Polymer 1:20–26 (1960).

    Google Scholar 

  6. D. Patterson. Free volume and polymer solubility. A qualitative view. Macromolecules 2:672–679 (1969).

    Google Scholar 

  7. A. H. Liddell and F. L. Swington. Thermodynamic properties of some polymer solutions at elevated temperatures. Disc. Faraday Soc. 49:115–120 (1970).

    Google Scholar 

  8. F. W. Billmeyer, Jr. Textbook of Polymer Science, 2nd ed., John Wiley & Sons, New York, 1970, pp. 39–41.

    Google Scholar 

  9. A. Silberberg, J. Eliassaf, and A. Kachalsky. Temperature-dependence of light scattering and intrinsic viscosity of hydrogen bonding polymers. J. Polym. Sci. 23:259–281 (1957).

    Google Scholar 

  10. Y. H. Bae, T. Okano, and S. W. Kim. Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water. J. Polym. Sci. Part B Polym. Phys. 28:923–936 (1990).

    Google Scholar 

  11. L. D. Taylor and L. D. Cerankowski. Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solution—A study of lower consolute behavior. J. Polym. Sci. Polym. Chem. Ed. 13:2551–2570 (1975).

    Google Scholar 

  12. J. H. Priest, S. L. Murry, R. J. Nelson, and A. S. Hoffman. Lower critical solution temperatures of aqueous copolymers of N-isopropylacylamide and other N-substituted acrylamides. ACS Symp. Ser. 350:255–264 (1987).

    Google Scholar 

  13. Roberto F. S. Freitas and E. L. Cussler. Temperature sensitive gels as extraction solvents. Chem. Eng. Sci. 42:97–103 (1987).

    Google Scholar 

  14. Roberto F. S. Freitas and E. L. Cussler. Temperature sensitive gels as size selective absorbants. Separat. Sci. Technol. 22:911–919 (1987).

    Google Scholar 

  15. A. S. Hoffman, A. Afrassiabi, and L. C. Dong. Thermally reversible hydrogels. II. Delivery and selective removal of substances from aqueous solutions. J. Control. Rel. 4:213–222 (1986).

    Google Scholar 

  16. Y. Okahata, H. Noguchi, and T. Seki. Thermoselective permeation from a polymer-grafted capsule membrane. Macromol. 19:493–494 (1986).

    Google Scholar 

  17. L. C. Dong and A. S. Hoffman. Thermally reversible hydrogels. III. Immobilization of enzymes for feedback reaction control, J. Control Rel. 4:223–227 (1986).

    Google Scholar 

  18. T. G. Park and A. S. Hoffman. Effect of temperature cycling on the activity and productivity of immobilized galactosidase in a thermally reversible hydrogel bead reactor. Appl. Biochem. Biotech. 19:1–9 (1988).

    Google Scholar 

  19. S. Hirotsu, Y. Hirokawa, and T. Tanaka. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys. 87:1392–1359 (1987).

    Google Scholar 

  20. Y. Hirose, T. Amiya, Y. Hirokawa, and T. Tanaka. Phase transition of submicron gel beads. Macromol. 20:1342–1344 (1987).

    Google Scholar 

  21. E. S. Matsuo and T. Tanaka. Kinetics of discontinuous volume-phase transition of gels. J. Chem. Phys. 89:1695–1703 (1988).

    Google Scholar 

  22. S. Hirotsu. Critical points of the volume phase transition in N-isopropylacryamide gels. J. Chem. Phys. 88:427–431 (1988).

    Google Scholar 

  23. E. F. Cluff, E. K. Gladding, and R. Pariser. A new method for measuring the degree of crosslinking in elastomers. J. Polym. Sci. XLV:341–345 (1960).

    Google Scholar 

  24. Y. K. Sung, D. E. Gregonis, M. S. John, and J. D. Andrade. Thermal and pulse NMR analysis of water in poly(2-hydroxyethyl methacrylate). J. Appl. Polym. Sci. 26:3719–3728 (1981).

    Google Scholar 

  25. H. B. Lee, M. S. John, and J. D. Andrade. Nature of water in synthetic hydrogels. 1. Dilatometry, specific conductivity, and differential scanning calorimetry of polyhydroxyethyl methacrylate. J. Colloid Interface Sci. 51:225–331 (1975).

    Google Scholar 

  26. W. E. Roorda, J. A. Bouwstra, M. A. de Vries, and H. E. Junginger. Thermal behavior of poly hydroxy ethyl methacrylate (pHEMA) hydrogels. Pharm. Res. 5:722–725 (1988).

    Google Scholar 

  27. L. H. Sperling. Interpenetrating Polymer Networks and Related Materials, Plenum Press, New York, 1981.

    Google Scholar 

  28. A. Peters and S. J. Candau. Kinetics of swelling of polyacrylamide gels. Macromol. 19:1952–1955 (1986).

    Google Scholar 

  29. Y. Hirokawa, E. Sato, S. Hirotsu, and T. Tanaka. Critical kinetics of isopropylacrylamide gel swelling. Polym. Mater. Sci. Eng. 52:520–521 (1985).

    Google Scholar 

  30. Y. H. Bae, T. Okano, and S. W. Kim. “On-off” thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels. Pharm. Res. 8:624–628 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, Y.H., Okano, T. & Kim, S.W. “On–Off” Thermocontrol of Solute Transport. I. Temperature Dependence of Swelling of N-Isopropylacrylamide Networks Modified with Hydrophobic Components in Water. Pharm Res 8, 531–537 (1991). https://doi.org/10.1023/A:1015871732706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015871732706

Navigation