Skip to main content
Log in

Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clusters

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Mackay introduced two important crystallographic concepts in a short paper published 40 years ago. One is the icosahedral shell structure (iss) consisting of concentric icosahedra displaying fivefold rotational symmetry. The number of atoms contained within these icosahedral shells and subshells agrees well with the magic numbers in rare gas clusters, (C60) N molecules, and some metal clusters determined by mass spectroscopy or simulated on energy considerations. The cluster of 55 atoms within the second icosahedral shell occurs frequently and has been called Mackay icosahedron, or simply MI, which occurs not only in various clusters, but also in intermetallic compounds and quasicrystals. The second concept is the hierarchic icosahedral structures caused by the presence of a stacking fault in the fcc packing of the successive triangular faces in the iss. For instance, a fault occurs after the ABC layers resulting an ABCB packing. This is, in fact, a hierarchic icosahedral structure of a core icosahedron connected to 12 outer icosahedra by vertex sharing, or an icosahedron of icosahedra (double MI. Contrary to Mackay's iss, a faulted hierarchic icosahedral shell is, in fact, a twinlike face capping of the underlying triangles; it is, therefore, called an anti-Mackay cluster. The hierarchic icosahedral structure in an Al-Mn-Pd icosahedral quasicrystal has a core of body-centered cube rather than an icosahedron and, therefore, is called a pseudo-Mackay cluster. The hierarchic icosahedral structures have been studied separately in the past in the fields of clusters, nanoparticles, intermetallic compounds, and quasicrystals, but the underlying geometry should be the same. In the following a unified geometrical analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mackay, A. L. Acta Crystallogr. 1962, 15, 916.

    Google Scholar 

  2. Pauling, L. J. Amer. Chem. Soc. 1947, 69, 542.

    Google Scholar 

  3. Frank, F. C. Proc. Roy. Soc. London 1952, A215, 43.

    Google Scholar 

  4. Ino, S. J. Phys. Soc. Jpn. 1966, 21, 346.

    Google Scholar 

  5. Allpress, J. G.; Sanders, J. V. Surf. Sci. 1967, 7, 1.

    Google Scholar 

  6. Volkov, V. V.; Van Tendeloo, G.; Tsirkov, G. A.; Cherkashina, N. V.; Vargaftik, M. N.; Moiseev, I. I.; Novotortsev, V. M.; Kvit, A. V.; Chuvilin, A. L. J. Cryst. Growth 1996, 163, 377.

    Google Scholar 

  7. Hofmeister, H. Cryst. Res. Technol. 1998, 33, 3.

    Google Scholar 

  8. Mackay, A. Nature (London) 1998, 391, 324.

    Google Scholar 

  9. Hubert, H.; Devouard, B.; Garvie, L. A. J.; O'Keeffe, M.; Buseck, P. R.; Petuskey, W. T.; McMillan, P. F. Nature (London) 1998, 391, 376.

    Google Scholar 

  10. Hoare, M. R.; Pal, P. J. Cryst. Growth 1972, 17, 77.

    Google Scholar 

  11. Hoare, M. R. Advan. Chem. Phys. 1979, 40, 49.

    Google Scholar 

  12. Farges, J.; Raoult, B.; Torcet, G. J. Chem. Phys. 1973, 59, 3454.

    Google Scholar 

  13. Echt, O.; Sattler, K.; Recknagel, E. Phys. Rev. Lett. 1981, 47, 1121.

    Google Scholar 

  14. Martin, T. P. Phys. Rep. 1996, 273, 199.

    Google Scholar 

  15. Martin, T. P.; Bergmann, T.; Göhlich, H.; Lange, T. Chem. Phys. Lett. 1991, 176, 343.

    Google Scholar 

  16. Martin, T. P.; Näher, U.; Bergmann, T.; Göhlich, H.; Lange, T. Chem. Phys. Lett. 1991, 183, 119.

    Google Scholar 

  17. Northby, J. A. J. Chem. Phys. 1987, 87, 6166.

    Google Scholar 

  18. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature (London) 1985, 318, 162.

    Google Scholar 

  19. Martin, T. P.; Näher, U.; Schaber, H.; Zimmermann, U. Phys. Rev. Lett. 1993, 71, 3079.

    Google Scholar 

  20. Mackay, A. L. Izv. Jugosl. Centr. Krist. (Zagreb) 1975, 10, 15.

    Google Scholar 

  21. Penrose, R. Bull. Inst. Math. Appl. 1974, 10, 266.

    Google Scholar 

  22. Hargittai, I. Chem. Intell. 1997, 3, 25; Hargittai, I.; Hargittai, M. In Our Own Image, Personal Symmetry in Discovery; Kluwer/Academic: New York, 2000; p. 152.

    Google Scholar 

  23. Mackay, A. L. Physica 1982, 114A, 609.

    Google Scholar 

  24. Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Phys. Rev. Lett. 1984, 53, 1951.

    Google Scholar 

  25. Elser, V.; Henley, C. L. Phys. Rev. Lett. 1985, 55, 2883.

    Google Scholar 

  26. Guyot, P.; Audier, M. Phil. Mag. B 1985, 52, L15.

    Google Scholar 

  27. Cooper, M.; Robinson, K. Acta Crystallogr. 1966, 20, 614.

    Google Scholar 

  28. Henley, C. L. Comments Condens. Matter Phys. 1987, 13, 59.

    Google Scholar 

  29. Sung, M.-W.; Kawai, R.; Weare, J. H. Phys. Rev. Lett. 1994, 73, 3552.

    Google Scholar 

  30. Yang, Q. B. Phil. Mag. B 1988, 58, 47.

    Google Scholar 

  31. Sugiyama, K.; Kaji, N.; Hiraga, K. Acta Crystallogr. 1998, C54, 445.

    Google Scholar 

  32. Hoare, M. Ann. N.Y. Acad. Sci. 1976, 279, 186.

    Google Scholar 

  33. Farges, J.; de Feraudy, M. F.; Raoult, B.; Torchet, G. J. Chem. Phys. 1986, 84, 3491.

    Google Scholar 

  34. Doye, J. P. K.; Wales, D. J.; Berry, R. S. J. Chem. Phys. 1995, 103, 4234.

    Google Scholar 

  35. Kreiner, G.; Franzen, H. F. J. Alloys Comp. 1995, 221, 15.

    Google Scholar 

  36. Hoard, I. L.; Sullenger, D. B.; Kennard, C. H. L.; Hughes, R. E. J. Solid State Chem. 1970, 1, 268.

    Google Scholar 

  37. Higashi, I.; Kobayashi, K.; Tanaka, T.; Ishizawa, W. J. Solid State Chem. 1997, 133, 16.

    Google Scholar 

  38. Cenzual, K.; Chabot, B.; Parthé, E. Acta Crystallogr. 1985, 41, 313.

    Google Scholar 

  39. Tamura, N. Phil. Mag. A 1997, 76, 337.

    Google Scholar 

  40. Samson, S. Acta Chem. Scand. 1949, 3, 809.

    Google Scholar 

  41. Samson, S. Acta Chem. Scand. 1949, 3, 835.

    Google Scholar 

  42. Bergman, G.; Waugh, J. L. T.; Pauling, L. Nature (London) 1952, 169, 1057.

    Google Scholar 

  43. Bergman, G.; Waugh, J. L. T.; Pauling, L. Acta Crystallogr. 1957, 10, 254.

    Google Scholar 

  44. Pauling, L. Phys. Rev. Lett. 1987, 58, 365.

    Google Scholar 

  45. Pauling, L. Amer. Scientist 1955, 43, 285.

    Google Scholar 

  46. Sun, W.; Lincoln, F. J.; Sugiyama, K.; Hiraga, K. Mater. Sci. Eng. 2000, 294296, 327.

    Google Scholar 

  47. Cherkashin, E. E.; Kripyakevich, P. I.; Oleksiv, G. I. Sov. Phys.-Crystallogr. 1964, 8, 681.

    Google Scholar 

  48. Audier, M.; Pannetier, J.; LeBlanc, M.; Janot, C.; Lang, J.-M.; Dubost, B. Physica B 1988, 153, 136.

    Google Scholar 

  49. Boerdijk, A. H. Philips Res. Rept. 1952, 7, 303.

    Google Scholar 

  50. Frank, F. C.; Kasper, J. S. Acta Crystallogr. 1958, 11, 184; Acta Crystallogr. 1959, 12, 483.

    Google Scholar 

  51. Shoemaker, P. D.; Shoemaker, C. B. Acta Crystallogr. B, 1986, 42, 3.

    Google Scholar 

  52. Shoemaker, P. D.; Shoemaker, C. B. Mater. Sci. Forum 1987, 2224, 67.

    Google Scholar 

  53. Samson, S. In Structural Chemistry and Molecular Biology; Rich, A.; Davidson, N., eds.; Freeman: San Fransisco, CA, 1968; p. 687.

    Google Scholar 

  54. Samson, S. Mater. Sci. Forum 1987, 2224, 83.

    Google Scholar 

  55. Pauling, L. The Nature of the Chemical Bond and Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd edn.; Cornell University Press: Ithaca, New York, 1963.

    Google Scholar 

  56. Mackay, A. L. Nature (London) 1985, 315, 636.

    Google Scholar 

  57. Ramanchandrarao, P.; Sastry, G. V. S. Pramana 1985, 25, L225.

    Google Scholar 

  58. Henley, C. L.; Elser, V. Phil. Mag. B 1986, 53, L59.

    Google Scholar 

  59. Audier, M.; Sainfort, P.; Dubost, B. Phil. Mag. B 1986, 54, L105.

    Google Scholar 

  60. Tillard-Chabonnel; Belin, C. J. Solid State Chem. 1991, 90, 270.

    Google Scholar 

  61. Tillard-Chabonnel; Chahine, A. Belin, C. Mater. Res. Bull. 1993, 28, 1285.

    Google Scholar 

  62. Tillard-Chabonnel; Belin, C. Mater. Res. Bull. 1992, 27, 1277.

    Google Scholar 

  63. Boudard, M.; Boissieu, M. D., Janot, C.; Heger, G.; Beeli, C.; Nissen, H.-U.; Vincent, H.; Ibberson, R.; Audier, M.; Dubois, J. M. J. Phys. Condens. Matter 1992, 4, 10149.

    Google Scholar 

  64. Janot, C.; de Boissieu, M. Phys. Rev. Lett. 1994, 72, 1674.

    Google Scholar 

  65. Mahne, S.; Steurer, W. Z. Kristallogr. 1996, 211, 17.

    Google Scholar 

  66. Edler, F. J.; Gramlich, V.; Steurer, W. J. Alloys Comp. 1998, 269, 7.

    Google Scholar 

  67. Hiraga, K.; Suiyama, K.; Ohsuna, T. Phil. Mag. A 1998, 78, 1051.

    Google Scholar 

  68. Tsai, A. P.; Guo, J. Q.; Abe, E., Takakura, H.; Sato, T. J. Nature (London) 2000, 408, 537.

    Google Scholar 

  69. Takakura, H.; Guo, J.; Tsai, A. P. Phil. Mag. Lett. 2001, 81, 411.

    Google Scholar 

  70. Palenzona, A. J. Less-Common Met. 1971, 25, 367.

    Google Scholar 

  71. Bruzzone, G. Gazz. Chim. Italy 1972, 102, 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, K.H. Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clusters. Structural Chemistry 13, 221–230 (2002). https://doi.org/10.1023/A:1015847520094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015847520094

Navigation